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PupilScreen: Using Smartphones to Assess Traumatic Brain Injury
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Before a person su�ering from a traumatic brain injury reaches a medical facility, measuring their pupillary light re�ex (PLR)
is one of the few quantitative measures a clinician can use to predict their outcome. We propose PupilScreen, a smartphone
app and accompanying 3D-printed box that combines the repeatability, accuracy, and precision of a clinical device with the
ubiquity and convenience of the penlight test that clinicians regularly use in emergency situations. �e PupilScreen app
stimulates the patient’s eyes using the smartphone’s �ash and records the response using the camera. �e PupilScreen box,
akin to a head-mounted virtual reality display, controls the eyes’ exposure to light. �e recorded video is processed using
convolutional neural networks that track the pupil diameter over time, allowing for the derivation of clinically relevant
measures. We tested two di�erent network architectures and found that a fully convolutional neural network was able to
track pupil diameter with a median error of 0.30 mm. We also conducted a pilot clinical evaluation with six patients who had
su�ered a TBI and found that clinicians were almost perfect when separating unhealthy pupillary light re�exes from healthy
ones using PupilScreen alone.
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1 INTRODUCTION
Traumatic brain injury (TBI) accounts for 30% of all injury-related deaths in the United States [9]. TBI can occur
in a variety of situations, including car accidents, falls, and blunt force trauma. A concussion is a speci�c form
of TBI caused by a swi� blow to the head; these injuries tend not to be life-threatening, but can have serious
and long-term e�ects on a person’s memory, motor abilities, and overall cognition [37]. One area in which
concussions have garnered national a�ention is sports, particularly contact sports such as boxing, hockey, and
American football. �e CDC estimates that there are roughly 3.8 million concussions per year in the US, and
about half of them will go undiagnosed [19]. Patients su�ering a concussion have a 600% increased risk of a future
head injury and 15% increased risk of permanent cognitive de�cits [19]. �is is particularly more problematic
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for younger athletes who are not as well-educated on concussion prevention measures such as proper tackling
technique. Roughly 250,000 young Americans (<20 years old) were treated for sports-related concussions in
2009 [7]. High school football players are 3 times more likely to su�er a catastrophic head injury than college
football players [4]. Athletic departments with major funding can a�ord to have a team doctor with years of
experience on-hand to diagnose concussions. For teams that are not as well-funded (e.g., pee-wee, middle school,
high school), a school nurse, volunteer, or parent must put themselves in the same position as those doctors, but
without the same tools or knowledge at their disposal. Identifying concussions immediately is essential because
allowing a concussed athlete to return to play can lead to further signi�cant injury [34]. �ere exists a need for
accessible concussion screening that anyone can use at any moment. Our proposed system, PupilScreen, is meant
to address this need by using a technology that most people have within arm’s reach: a smartphone.

�e methods that team doctors currently use to assess the probability of a concussion on the sidelines fall in
one of two categories. �e �rst category is task-based methods, which grade the performance of an athlete at a
particular task using quantitative measures. For example, the King-Devick test [15] requires an athlete to read
single digit numbers from le�-to-right in di�erent con�gurations. �e second category includes survey-based
methods, such as the Sport Concussion Assessment Tool (SCAT) 1. Although a great deal of research supports the
e�cacy of these methods [14, 16], they capture indirect e�ects of concussions, require the athlete to be responsive,
and take minutes to complete. �ese methods also require baseline measurements taken at the beginning of
the season, which Broglio et al. [5] found were not repeatable for 118 healthy student volunteers. Furthermore,
there is anecdotal evidence that athletes sometimes intentionally fail the baseline assessment so that there is li�le
di�erence following an injury and they can remain in play [33].

A more quantitative method to assess a TBI is to check a person’s pupillary light re�ex (PLR), or the manner in
which their pupils react to a light stimulus. �e PLR of those who have su�ered a TBI is typically either slower
or not as pronounced [6]. �e clinical gold standard for measuring the PLR uses a device called a pupillometer.
Pupillometers are expensive (∼$4,500 USD) and are therefore mainly used in hospital intensive care units. Another
method for assessing the PLR is through a penlight exam, in which a clinician directs a penlight towards each
of the patient’s eyes and observes the pupils’ responses. �is procedure is simple to perform, but has many
drawbacks, including a lack of standardization, a need for deliberate training, and poor inter-observer reliability
[38]. �ose who provide �rst aid in emergency situations (e.g., EMTs and ba�le�eld medics) will o�en conduct
penlight exams despite these limitations because rapid assessment is prioritized over precision.

PupilScreen combines the repeatability, accuracy, and precision of a pupillometer with the ubiquity and
convenience of the penlight test for quantifying a person’s PLR. �e PupilScreen system consists of two ubiquitous
components: a smartphone app and a box (Fig. 1). Most people own a smartphone, and the box can be easily
created since it does not require any wiring or expensive components. �is means that PupilScreen can be
available to almost anyone just hours before a sports event. �e PupilScreen app records an 8-second video of a
person’s eyes as the pupils constrict in response to the smartphone’s �ash. �e video is analyzed by convolutional
neural networks (CNNs) in order to estimate the diameter of the pupils in each frame. We explored two di�erent
architectures. �e �rst architecture uses two CNNs in sequence, where the �rst estimates the locations of
the pupils and the second estimates their diameters given images cropped around their locations. �e second
architecture uses a fully convolutional network to perform pixelwise segmentation. By examining how the
pupil diameter changes over time, we extract metrics used by clinicians for diagnosis (e.g., constriction velocity,
magnitude of diameter change). To standardize the results of the PupilScreen app, the smartphone is placed
in a 3D-printed box. �e box simultaneously eliminates ambient lighting conditions and controls the distance
between the person’s face and the �ash.

1h�p://www.sportconcussions.com/html/SCAT3.pdf
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Fig. 1. PupilScreen is a system that measures the pupillary light reflex to determine the severity of a traumatic brain injury.
A smartphone app records a video of the patient’s eyes as the camera’s flash illuminates them. The VR headset-like box
controls the position of the phone and the lighting that reaches the eyes.

Training CNNs requires a large quantity of diverse data, which is di�cult to collect from patients with TBI.
�erefore, we evaluated PupilScreen’s ability to track the PLR on a dataset from 42 healthy adults. �e range
of pupil sizes encountered in non-reactive pupils is a subset of that encountered in reactive pupils; because the
networks are trained on video frames in isolation, training PupilScreen on data from healthy individuals allows
it to measure pupil diameter in individual video frames regardless of pupil reactivity. We found through our
analysis that the PupilScreen was able to track pupil diameter with a median error of 0.30 mm with the fully
convolutional network, the more accurate of the two approaches. Meeker et al. [35] found that manual pupil
examination has a median error of 0.5 mm, and a clinical pupillometer has a median error of 0.23 mm, which
places the accuracy of PupilScreen between the two. PupilScreen was also able to track the pupil center with
a median error of 0.20 mm. Using information about the pupil diameter over time, PupilScreen extracts three
clinically relevant measurements: constriction amplitude, percentage, and velocity. We found that PupilScreen
estimates constriction amplitude with a mean absolute error of 0.62 mm for a range of measured amplitudes that
spanned 0.32-6.02 mm, constriction percentage with a mean absolute error of 6.43% for a range that spanned
6.21-62.00%, and max constriction velocity with a mean absolute error of 1.78 mm/s for a range that spanned
1.37-8.99 mm/s. To support PupilScreen’s e�cacy as a diagnostic tool, we conducted a pilot clinical evaluation
with six patients who had su�ered a TBI. We found that clinicians were able to distinguish between normal and
abnormal PLR curves produced by PupilScreen with almost perfect accuracy.

In designing a smartphone-based pupillometry system, our main challenges are:
(1) Designing a controlled setup that is portable and inexpensive, and
(2) Accurately identifying the pupils in video using only visible light.

Our contribution comes in four parts:
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(1) �e design and implementation of the PupilScreen system, which allows a smartphone to perform
repeatable PLR tests at a fraction of the cost of a clinical device,

(2) Two di�erent CNN-based approaches for estimating the pupil diameter in videos,
(3) An evaluation of PupilScreen’s accuracy on 42 healthy participants, and
(4) An evaluation of PupilScreen’s ability to assist with diagnosis on 6 individuals who have su�ered a TBI.

2 PUPILLARY LIGHT REFLEX BACKGROUND
Papers by Martnez-Ricarte et al. [30], Larson and Behrends [22], and Zafar and Suarez [55] provide thorough
discussions on the mechanics of the pupil, the pathophysiology of the PLR, and the diagnostic power of the PLR.
We summarize their content here for a broader audience, but refer the reader to their papers for a more detailed
discussion of the PLR.

2.1 The Characteristics of the PLR
A normal PLR is de�ned as symmetric constriction or dilation of both pupils in response to a light stimulus
or its absence, respectively. �e pupil size must change by a non-trivial amount within a speci�ed time frame
and should change in both eyes, regardless of which eye is stimulated. For example, when a person covers one
eye while the other is exposed to bright light, the pupils of both the covered and exposed eyes should constrict,
producing a phenomenon known as the consensual response.

Fig. 2. A PLR curve annotated with the five common descriptive measures: (1) latency, (2) constriction velocity, (3) constriction
amplitude, (4) constriction percentage, and (5) dilation velocity. An abnormal PLR curve with increased latency, slower
velocities, and diminished amplitude is also included for comparison.

When given pupil diameter as a function of time, clinicians focus on �ve simpler quantitative measures (Fig. 2):
• Latency (ms): the time between the beginning of the light stimulus and the start of pupil constriction
• Constriction velocity (mm/s): the speed at which pupil constricts; reported as mean or max
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• Constriction amplitude (mm): the di�erence between the maximum pupil diameter before light
stimulation and minimum pupil diameter a�er light stimulation
• Constriction percentage (%): the constriction amplitude expressed as a percentage of the initial size
• Dilation velocity (mm/s): the speed at which the pupil dilates; reported as mean or max

2.2 Diagnostic Significance of the PLR
Because the neural pathways underlying the PLR include multiple brain regions and traverse many others, it
is sensitive to a variety of injuries [52]. Our motivating use case is traumatic brain injury. When the brain
shi�s inside the skull, it has the potential to injure both the cranial nerves carrying signals necessary for the
production of the PLR or the brain regions that process these signals. A survey by Zafar et al. [55] in 2014 notes
that the literature relating PLR to concussions is limited because it o�en includes a small number of patients (≤10
patients with TBI) or individual case studies; however, researchers such as Ciu�reda et al. have recently published
the results of studies with larger datasets. In 2015, �iagarajan et al. [46] quantitatively evaluated the PLRs of
individuals with non-blast-induced, chronic, mild TBI (mTBI). �at study included 15 healthy individuals and 17
patients with mTBI. �iagarajan et al. [46] found statistically signi�cant di�erences between the two populations
for most of the PLR metrics listed in Section 2.1. In a study published a year later, Truong et al. [48] carried
out a larger study with 40 healthy individuals and 32 patients with mTBI. Beyond the larger study population,
Truong et al. also studied how di�erent light stimuli (e.g., pulses, step changes, di�erent colors) could be used
to be�er discriminate certain PLR metrics. Populations of the same size were later examined to determine how
pupillary asymmetry [50], photosensitivity [49], and refractive errors [51] a�ected the PLR. With more accessible
pupillometry, such as that provided by PupilScreen, we believe that larger scale studies will be easier than ever
before, particularly for examining the immediate e�ects on the PLR following a crisis.

Changes in the PLR are much be�er described by the literature in the context of severe TBI since those patients
are o�en hospitalized and the changes are more obvious as a result of the severe cerebral dysfunction. Taylor
et al. [45], for example, found that elevated intracranial pressure (ICP) for >15 minutes in patients with midline
shi� was associated with a decrease in pupillary constriction velocity. �e PLR has also been examined as an
indicator of the outcomes for patients following cardiac arrest. In a case study with 30 patients, Behrends et al. [3]
found that the presence of a reactive pupil during the �rst �ve minutes of CPR was associated with increased
survival and good neurologic outcome.

2.3 Techniques for Measuring the PLR
�ere are two methods used by clinicians to measure the PLR. �e clinical gold standard method uses a device
called a pupillometer. Infrared-based pupillometry takes advantage of the fact that there is a be�er demarcated
boundary between the pupil and the iris when infrared imaging is used. While pupil diameter is tracked using
infrared light, a ring of white LEDs stimulates the eye, causing the pupillary constriction. �e components
needed to make a pupillometer can be inexpensive, but the total product costs ∼$4,500 USD because, among other
reasons, it is a self-contained system with proprietary algorithms and strict hardware requirements. Nevertheless,
pupillometers provide two main bene�ts: precision and consistency. A study conducted by Meeker et al. [35]
revealed that, for a modest participant pool, a pupillometer can track the pupil diameter with a median error of
0.23 mm. Couret et al. [8] asked multiple clinicians to perform PLR measurements on 200 healthy volunteers in a
variety of ambient lighting conditions. �ey found high intra-class correlation for maximum resting pupil size
(0.95) and minimum pupil size a�er light stimulation (0.87) regardless of ambient lighting or device operator.

A low-cost alternative for measuring the PLR involves using a penlight - a pen-sized �ashlight (Fig. 3). A
penlight test is performed by directing the penlight toward and away from the patient’s eye. Because the PLR
is manually observed by a clinician, penlight-based pupil measurements are more likely to be inaccurate and
imprecise. Meeker et al. [35] found that manual measurement of pupil diameter resulted in a median error of
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Fig. 3. A penlight test being performed by a clinician.

0.5 mm, more than twice that of a pupillometer. Couret et al. [8] found a poor Spearman’s rank correlation
coe�cient (0.75) between manual pupil size measurements and pupillometer readings. Only 64% of the cases
when volunteers had pupils smaller than 2 mm were properly identi�ed, and only half of the cases of anisocoria
(i.e., unequal pupil sizes) were caught. Larson et al. [23] note the inability of clinicians to detect small, but clinically
signi�cant responses. Characteristics such as constriction velocity and amplitude also cannot be measured in
absolute terms when using a penlight; instead of reporting a constriction velocity as 3.8 mm/s, observers can
only describe the PLR as “normal”, “sluggish”, or “�xed”. Penlight exams lack standardization as well. Clinicians
purchase penlights from di�erent companies, each with their own brightness speci�cations. Even if two health
care providers use the same penlight, the patient may not experience the same light stimulus because of how the
clinicians hold their penlights (i.e., distance and angle) or due to di�erences in ambient lighting conditions. Prior
work has also discussed how penlight tests can lead to poor inter-observer reliability in PLR characteristics. Olson
et al. [38] performed a single-blinded observational study where two practitioners were asked provide subjective
scores for pupil reactivity. Across 2,329 paired assessments, Cohen’s kappa coe�cient was only moderate for
pupil size (κ = 0.54), shape (κ = 0.62), and reactivity (κ = 0.40). In fact, only 33.3% of the pupils that were judged
to be non-reactive by the practitioners were scored as non-reactive by pupillometry.

Our prototype of PupilScreen is the �rst step towards combining the advantages of a pupillometer (repeatability,
accuracy, precision) with the advantages of a penlight test (ubiquity, convenience). Before discussing how
PupilScreen works, we will �rst provide an overview of pertinent related work.

3 RELATED WORK
�e ubiquity of smartphones has enabled them to become a platform for the e�ective deployment of health
applications. Mobile health is growing at an exponential rate, but we focus our review of related work on
applications pertaining to the eye. We also summarize previous work surrounding gaze tracking and pupil
measurement.

3.1 Ocular Diagnostic Applications
A series of ocular diagnostic applications have been proposed by the Camera Culture Lab at MIT. CATRA [40]
detects cataracts in the eye’s lens by scanning the eye with a beam of collimated light and asking for feedback from
the user regarding whether the beam appears clear or blurry. NETRA [39] asks the user to align pa�erns projected
through a microlens display and pinhole plane to identify refractive errors in the eye. Finally, EyeMITRA [24] is
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a wearable camera for performing mobile retinal imaging. By asking the user to focus onto points shown in the
other eye, indirect di�use illumination allows the camera to view the retina in the back of the eye. �ese projects
combine optical components with user input on simple tasks to perform otherwise complicated diagnostic
procedures. Our work di�ers from theirs in two ways: (1) once started, the PupilScreen application is completely
automated, and (2) PupilScreen utilizes hardware that is either already ubiquitous (the smartphone) or simple to
create with loose tolerance (the box).

�ere have been a number of other projects that utilize smartphones for diagnosing ocular conditions. D-Eye2

is a smartphone adapter for performing fundoscopy. Abdolvahabi et al. [1] describe how to catch the early onset
of rare eye cancers in newborns based on the color of their pupils in digital photos; many are familiar with the
common “red-eye” e�ect in pictures, but tumors in the back of the eye can make the pupil appear white in photos.
Bastawrous et al. [2] and Giardini et al. [17] have deployed a suite of tools for diagnosing ocular conditions,
including visual acuity and glaucoma.

3.2 Concussion Diagnostic Applications
Regarding concussions, metrics other than the PLR have been examined for diagnosis. Maruta et al. [31, 32]
measured visual tracking performance in terms of gaze positional error relative to a target and found that the
performance variability increased for those with a TBI. Joiiv Lindsay [27] is one of the many researchers who have
noted that involuntary eye movements are more prevalent in those with a TBI. Such work has been conducted in
a clinical se�ing with dedicated devices; along with measuring the PLR, we look forward to investigating these
metrics with PupilScreen in the future.

Lee et al. [25] provide a thorough survey of publicly available smartphone and tablet apps that are intended
for assessing sports-related concussions. We refer the reader to their survey for a complete list of the smartphone
apps that were examined, which includes both apps that are intended for non-medical personnel (e.g., coaches or
parents) and medical personnel (e.g., team doctors). Lee et al. compared the purpose of each app to the SCAT2
and found that all of them exhibited partial or imperfect compliance to it. Furthermore, they found that the
apps serve as a means of presenting, managing, and documenting various aspects of the SCAT2 rather than
automating them.

3.3 Gaze Tracking
Our work proposes a novel method for measuring pupil diameter. Although gaze tracking is a di�erent problem -
one that cares about the position of the pupil relative to the eye - the techniques used in both problems share
many similarities.

�e easiest way to track gaze involves the use of infrared light to emphasize the pupils. Infrared light is
invisible to the naked eye and re�ects o� of the cornea, a fact which is leveraged in one of two ways. In bright
pupil tracking, the light source is aligned with the camera so that the re�ection can be tracked; in dark pupil
tracking, the light source is o�-angle so the pupil remains darker than the rest of the eye. �ere are a variety of
commercial products by companies such as Tobii and LC Technologies that leverage this phenomenon for pupil
detection. �ese products are primarily intended for controlled, desktop situations, but researchers have proposed
form factors meant for on-site and outdoor scenarios. Fischer and van den Heever [10], Świrski et al. [44], and
Kassner et al. [20] are just three examples of techniques that take advantage of custom-designed headsets with
an infrared camera pointed directly at the eyes for gaze tracking. All three of those systems are intended for gaze
tracking and are evaluated as such, but their algorithms calculate both the pupil center and diameter as a means
to that end. It should also be noted that Fisher and van den Heever’s device uses gaze tracking alongside visual

2h�ps://www.d-eyecare.com/
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tasks like the King-Devick test with the intent of diagnosing sports-related concussions on the sideline, although
there is no formal study on how that data improves the power of those tests.

�ere is a variety of methods for tracking the pupil without the help of infrared light. �alcomm’s SnapDragon
SDK3 provides facial features like gaze direction using a smartphone’s front-facing camera, but their algorithm
is proprietary. Timm and Barth [47] propose a mean of gradients approach for identifying the pupil center;
essentially, the center is found using an optimization technique that identi�es the pixel where a vector �eld of
image intensity gradients is most likely to converge. For smartphones and tablets, EyeTab [54] relies on the
observation that the pupil and the iris are normally concentric, so the center of the ellipse that best �ts the edge
between the iris and the sclera also corresponds to the center of the pupil.

Fuhl et al. have proposed a number of methods for detecting the pupil center. ExCuSe [11] utilizes two di�erent
techniques depending on whether the image contains a re�ection or not. If there is a re�ection, curved edges are
found using dynamic thresholding and morphological operations; if there is no re�ection, the coarse center is
estimated using histograms oriented at various angles and then re�ned using an iterative ellipse-��ing technique
[26]. ElSe [13] de�nes the pupil as the location where an image of the eye responds to two pre-determined
convolutional �lters: a circular mean �lter and a surface di�erence �lter. Finally, PupilNet [12] uses two CNNs
for gaze tracking; the �rst CNN returns a coarse pupil center estimate, which is used to select a region of interest
that is fed into a second CNN to re�ne the prediction.

In this work, we explored two di�erent network architectures. �e �rst architecture is similar to PupilNet
in that it involves two CNNs in sequence. However, instead of using the second network to provide a more
precise estimate of the pupil center, we use the second network to estimate the pupil diameter. Although the
�rst network only provides a coarse estimate of the pupil center, we demonstrate that it is su�ciently accurate
for our purposes. �e second architecture is an implementation of FCN-8, a fully-convolutional neural network
proposed by Long et al. [28] for achieving pixelwise segmentation.

3.4 Pupil Measurement
Researchers have extended existing techniques for identifying the pupil center to measure the contour of the pupil.
Starburst [26] initializes an estimate of the pupil center using the mean of gradients approach. �e algorithm
then increments a marker in di�erent directions from that seed until the �rst strong edge (de�ned by the gradient
along this path crossing some threshold, which is expected to occur between the iris and pupil) is reached. An
ellipse is �t to those edge points and its center is used as the seed for subsequent iterations of the same procedure
until convergence.

A subset of the work in this area is particularly motivated by the use of pupil dilation as a proxy for assessing
cognitive load. PupilWare [42] proposes improvements on the Starburst technique for use with a desktop
web camera. �ese improvements include avoiding directions that could contain eyelash shadows and adding
randomness to seed selection. Klingner, Kuman, and Hanrahan [21] do not discuss their pupil measurement
algorithm in great detail, but provide a deeper analysis on task-evoked pupillary responses.

Many of the non-infrared-based techniques anecdotally cite issues for people with dark irises, even going as
far as removing users with extremely dark irises from their studies. �ey primarily rely on the presence of an
edge between the iris and the pupil. PupilScreen uses a completely model-based approach that can learn features
beyond edges (e.g., gradients and contiguous black pixels) for tracking the pupil.

4 DATA COLLECTION
We collected video recordings using the PupilScreen app and box to train its CNNs and evaluate its ability to
track pupil diameter. Since our approach to segmenting pupils relies on CNNs, we require a large number of

3h�ps://developer.qualcomm.com/so�ware/snapdragon-sdk-android
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Table 1. Participant demographics (N = 42)

SEX - N (%)
Male 16 (38.1%)
Female 26 (61.9%)
IRIS COLOR - N (%)
Blue 17 (40.5%)
Brown 20 (47.6%)
Mixed 5 (11.9%)

training examples from individuals with various pupil sizes and iris colors. �is is di�cult to a�ain through a
patient population with TBI. Cases of TBI are limited, and the pupils of those with TBI usually stay a �xed size.
Because of this, our networks are trained on data from healthy volunteers at the University of Washington and
Harborview Medical Center. Below, we elaborate on the diversity of the participant pool. We then describe our
data collection procedure, including the design of the PupilScreen box and our methods for gathering ground
truth measurements. In Section 6.4, we present a preliminary evaluation conducted on six individuals with TBI to
examine PupilScreen’s clinical e�cacy. All facets of our study were approved by the University of Washington’s
Institutional Review Board.

4.1 Enrollment
Our training dataset comes from 42 volunteers: 16 males and 26 females. Typical non-infrared computer vision-
based systems are reliant on determining the border between the iris and the pupil, which is more obvious
for those with light blue eyes than those with dark brown eyes. For this reason, it was important to recruit
participants with various iris colors. Our study includes a balanced mix of iris colors: 17 blue, 20 brown, and 5
with a noticeable gradient between di�erent colors. In most cases, the irises that were classi�ed as mixed were
light brown near the pupil but primarily blue.

Ideally, ethnicity should have no e�ect on PupilScreen’s ability to measure the pupil diameter since the two
are uncorrelated. We crop the images beforehand to reduce the number of skin-related pixels that are utilized by
the CNNs; however, since our model-based approach for tracking the pupil is agnostic to the eye’s structure, we
can make no guarantee that the CNNs will not learn to estimate the pupil center or diameter from skin tone
features. Although we did not speci�cally ask participants for ethnicity information, we note that one-sixth of
the participants had a darker skin complexion.

4.2 Data Collection Application
All of the data was collected by the researchers using a custom app on an iPhone SE. �e phone was placed into
a slot in the back of the PupilScreen box (Fig. 4). �e design of the box is the same as the one used in BiliScreen
[29], a project by a subset of this work’s authors that aims to estimate the color of a person’s sclera to detect cases
of jaundice. �e box-phone combination serves three purposes: (1) the box controls the position of the phone
relative to the person’s face, including the distance to and alignment with the face, (2) the box eliminates the
e�ects of ambient lighting conditions, and (3) the phone provides its own lighting using the �ash. �e dimensions
of the box are loosely modeled a�er the Google Cardboard. Besides the fact that the camera is centered for the
PupilScreen box, rather than the screen as in the Google Cardboard, the main di�erence between the two is the
fact that the PupilScreen box is deeper. Having the camera close to the participant’s face increases the e�ective
resolution of their eyes, which allows PupilScreen to detect smaller changes in pupil diameter and measure the
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Fig. 4. A 3D rendering of the PupilScreen box. The smartphone’s flash lies in the horizontal center of the box. The box has a
hole on the side so that a neutral density filter and a di�user can be aligned with the flash using a sliding stick.

PLR with increased precision. On the other hand, moving the phone further away allows the camera to see both
eyes at once and reduces the discomfort caused by the intense �ash.

Although the box used in this study was 3D-printed for durability, we believe that it could be made with an
even cheaper material like cardboard (provided that it is sturdy enough to support the weight of the phone).
Also note that there is no electronic connection between the phone and the box, simplifying its manufacturing
requirements. Apple iOS 9 does not provide complete dimming control over the brightness of the �ash LED. At
close distances, participants from a pilot study found the intensity of the light to be uncomfortable. To make
the light more manageable, a neutral density �lter and di�user were placed directly in front of the �ash using a
sliding stick. �ese components were chosen because they had precise speci�cations available online, but they
could be replaced with a cheaper alternative like a sheet of white computer paper in the future.

Prior to pu�ing the box up to their face, participants were asked to take o� glasses if they wore them. Once
the phone was placed in the box and the participant held it up to their face, the �ash was turned on brie�y and
autofocus was enabled. �e resulting camera focus was �xed for the remainder of the study to avoid blurriness
as the lighting in the box changed. �e �ash was then turned o� and a�er a brief pause to allow the pupils
to recover, data collection commenced. �e video was recorded at 30 fps with 1920×1080 resolution. A�er an
audible 3-second countdown from the phone’s speakers, the �ash illuminated the participant’s eyes. �e stark
change in lighting maximized the degree to which the pupil constricted, akin to the di�erence experienced when
using a pupillometer. �e recording stayed on for another �ve seconds, resulting in an 8-second long recording.
�e �ve second period a�er the introduction of the light stimulus was far longer than what was needed to capture
the PLR, but provided extra video frames for evaluation. For each study participant, the PLR was recorded three
times. Between recordings, a one-minute break was added to allow the participant to rest their eyes.

4.3 Ground Truth Measurements
Videos were manually annotated to generate ground truth labels. Using custom so�ware, two researchers labeled
frames by selecting points along the edges of the pupils and le�ing OpenCV’s ellipse ��ing algorithm generate a
corresponding outline (Fig. 5). �e researchers could see and adjust the outlines to be�er �t the images. If the
pupil was di�cult to distinguish from the iris, the researchers could adjust the contrast to make it more visible. If
the pupil was still too di�cult to see a�er that, either because of poor focus or lighting, the frame was skipped;
this only happened for 1.8% of the total frames encountered. �e points were �t to an ellipse because not all
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Fig. 5. A selection of manually annotated images of pupils zoomed in on the region of interest. Note that although the pupil
may seem indistinct from the iris in some of the images above, the labeling was performed on much larger monitors with
be�er contrast than what appears in print.

pupils are circular. Since pupillometry is only concerned with a single pupil diameter, the ellipses were converted
to circles by averaging their axes. With this method, the pupil diameters were labeled in pixels. �e researchers
labeled every ��h frame in the three videos from each user. Each video was 8 seconds long, but the �rst 3 seconds
occur before the �ash was turned on, resulting in 5 seconds × 30 frames/second × (1/5 frames) × 3 videos =
90 labeled frames per person. Frames were labeled independently of one another to avoid biases between frames;
however, this led to greater variation between consecutive frames that can be primarily a�ributed to human
error. A 3rd-order Savitzky-Golay �lter was applied to temporally smooth the pupil center and diameter labels.
To quantify the agreement of the labels across the researchers, both labeled a common set of 5 users (15 videos,
450 frames). �e average di�erence between the smoothed pupil center labels was 3.46 px, which translates to
0.27 mm. �e average di�erence between the smoothed pupil diameter labels was 2.00 px, which translates to
0.16 mm. Note that these variations are not independent; if a researcher underestimated the extent of an edge,
the labeled center would move away from that edge and the labeled diameter would be lower than the actual
value. �e degree of inter-researcher agreement can also be quanti�ed using the intersection-over-union (IoU)
measure, a standard metric for segmentation agreement between two regions. �e mean IoU for the researchers’
labels was 83.0%. Note that the IoU measure is calculated relative to the total area of the two labeled pupils. If the
pupil center labels for a 3 mm pupil were only o� by a single pixel, that di�erence alone would lead to an IoU
score of 93.8%.

Although a clinical-grade pupillometer could have provided an alternative method for quantifying the PLR, its
results would not have been directly comparable to PupilScreen. �e two setups have light stimuli with di�erent
intensities, which would result in di�erent magnitudes of pupil constriction. Furthermore, PupilScreen eliminates
the e�ect of ambient lighting because the box completely encloses the patient’s eyes, whereas pupillometers
do not since they are used in hospitals with roughly standard lighting conditions. Infrared imaging could have
been used to provide a comparative ground truth measurement of pupil diameter; however, an algorithm still
would have been needed to turn those frames into pupil diameters, and that algorithm would have needed its
own validation.

5 PUPILSCREEN ALGORITHM
In this section, we will describe how the video data was pre-processed before being input to the CNNs. We then
follow by describing the architecture of the CNNs used to estimate the pupil center and the pupil diameter, the
post-processing of the CNN outputs, and the speci�cs of the CNN training.
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5.1 Pre-processing

Fig. 6. Each frame was cropped to create two input images for the CNNs: one for the le� eye and one for the right eye. The
image of the right eye and its label were flipped to make the two images comparable.

Videos were recorded at 30 fps with 1920×1080 resolution. Treating each pixel as an individual input feature
produces a very large input layer with a signi�cant amount of unnecessary information; pixels around the eye
socket provide no information about the pupil, and pixels on the le� and right sides of the image should be
considered independently in order to catch cases in which the pupils behave di�erently. We a�empted to crop
around the eyes using o�-the-shelf eye detection algorithms, but found that they failed in many cases. �is may
have been because the detection algorithms rely on the presence of other facial features (e.g., nose) that are
obscured by the PupilScreen box. Instead, the conservative cropping bounds in Fig. 6 are used. �e bo�om third
is cropped o� because it only contains the box. �e remainder of the video frame is split into two halves - le�
and right - to produce one image per pupil. To make the images comparable and allow a single CNN to handle
each task, the image of the right eye and the coordinates of its pupil center label are �ipped horizontally. To
emphasize the pupil, the image is converted to the HSL color space and contrast-limited adaptive histogram
equalization (CLAHE) [41] is applied to the lightness (L) channel. In short, CLAHE avoids the pitfalls of global
histogram equalization by dividing an image into small tiles (88 px in our case) and then equalizing only within
those individual tiles.

5.2 CNN Architectures
Two di�erent architectures were tested for measuring the size of the pupil. We describe their inspiration and
implementation details below.

5.2.1 First Architecture: Sequential CNNs. �e �rst architecture was similar to that of PupilNet by Fuhl
et al. [12], which uses two networks in sequence to arrive at a precise estimate of the pupil center. �e intuition
behind their approach was that the �rst network reduces the search space for the pupil by roughly localizing the
pupil center, allowing for the second network to ignore irrelevant pixels and examine a speci�c region in more
detail. Inspired by that intuition, we also explored the use of two networks for pupil measurement. �e �rst
network serves the same purpose, but the two applications di�er in the second network. Rather than learning a
�ner pupil center measurement, we train the second network to learn the pupil diameter. We demonstrate that
even if the pupil is not exactly centered using the output of the �rst network, the second network can be robust
enough to handle those issues.

Fig. 7 illustrates the details of the �rst architecture. �e �rst network (Fig. 7, top) is trained to accept an image
from the pre-processing step as input and return the location of the pupil center. Before being input to the
network, the image is downsampled by a factor of 4. �e network has 5 convolutional layers, each with a recti�ed
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Fig. 7. The first architecture that was explored for PupilScreen. The top numbers indicate the number of filters in the
convolutional layers or neurons in the fully-connected layers. The bo�om numbers specify filter dimensions. For example,
the first convolutional layer in both networks applies 16 5×5 px filters. There are 2×2 px mean-pooling layers a�er each
convolutional layer, but they are omi�ed for space. (top) The first CNN takes the original image as an input and returns an
estimate of the pupil’s location. (bo�om) Given the location of the pupil center, a region of interest is cropped from the
original image and provided to the second CNN to estimate pupil diameter.

linear (ReLU) activation function followed by 2×2 px mean-pooling layers. Mean-pooling was chosen over
max-pooling because max-pooling results in translation-independent behavior that would have been undesirable
for capturing location information. �e �nal layer of the �rst network is fully-connected to compress information
across all �lters and sub-regions to an x- and y-coordinate estimate. �e output labels were normalized according
to the mean and standard deviation of the pupil location across the entire dataset. �is was done to ensure that
the same error in either direction would equally a�ect the network’s weights during backpropagation.

Using the output of the �rst network, a region of interest that is roughly 1/9th of the original image’s size is
cropped and centered about the estimated pupil. �at region is provided to the second network (Fig. 7, bo�om),
which is trained to estimate the pupil diameter. �e network has the same architecture as the �rst one except for
the fact that it produces a single output: the pupil diameter.

�e number of layers was determined empirically to balance the tradeo� between network size and accuracy.
Smaller networks are desirable so that they can �t on the smartphone, but we found that using fewer layers did
not yield satisfactory results. �e other speci�cs of the networks (e.g., more smaller �lters as the network gets
deeper, pooling a�er each set of convolutional �lters) were based on suggestions from literature [18], but are
certainly an area for future investigation.

5.2.2 Second Architecture: Fully Convolutional. �e �rst network architecture learns the pixel indices of the
pupil center and the diameter of the pupil, but treats them just like any other continuous outputs rather than
explicit location and size information. �e second network architecture takes a di�erent approach, viewing
the problem as one of explicit segmentation. �e goal of segmentation is to produce a label for every single
pixel that speci�es the object to which it belongs; as illustrated in Fig. 8, there are two classes for the purposes
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Fig. 8. The second architecture assigns each pixel to one of two classes: “pupil” (white) or “non-pupil” (black). The largest
contiguous cluster of “pupil” pixels is assumed to be the pupil, and its border is smoothed so that it can be fit to an ellipse.

of PupilScreen: “pupil” and “non-pupil”. We implemented FCN-8, a fully convolutional architecture proposed
by Long et al. [28]. In short, fully convolutional networks are normally based on a pre-trained convolutional
network for image classi�cation (e.g., VGG16 [43]). �e �nal classi�er layer is removed and replaced by layers
that deconvolve, or upsample, the downsampled predictions to their original resolution. For the sake of network
size, we downsample images by a factor of 2 before inpu�ing them to the network.

Once pixelwise predictions are produced, there is still the ma�er of measuring a pupil diameter. �e largest
contiguous cluster of pixels with the “pupil” label is treated as the pupil. �e border of that cluster is smoothed
using median blurring and then �t to an ellipse. �e mean of the ellipse’s two axes is treated as the pupil diameter
for that frame.

5.3 Training
Both architectures were trained with backpropagation using batches composed of 10 images randomly sampled
from the training set. To ensure that there was no overlap between training and testing data, the evaluation was
conducted using 5-fold cross-validation across users; in other words, if there are N users, N/5 users are held out
each time for testing and the remaining 4×N/5 users are used for training. Recall that three videos were recorded
for each user. All networks were trained for 10 epochs per fold; this number was determined empirically based
on the convergence of the smoothed loss function outputs across the training data. On average, training the �rst
network architecture took 14 mins per fold, resulting in a total training time of 14 mins × 5 folds × 2 networks =
2 hours 20 mins. Training the second network architecture took 1 hours 59 mins per fold, resulting in a total
training time of 119 mins × 5 folds = 9 hours 55 mins. Computation was carried out by a single NVidia GeForce
Titan X GPU. Testing an individual frame through either network architecture took approximately 2 ms, which
means that it would take the system roughly 2 ms × 30 frame/second × 5 seconds = 300 ms to test an entire video.
�e networks in the sequential CNN architecture were trained using batch gradient descent in order to minimize
the L2 loss. �e fully convolutional network was trained in the same way to minimize the per-pixel multinomial
logistic loss.

To ensure that the dataset was not signi�cantly biased towards images of fully constricted pupils, only frames
within the �rst 3 seconds of the light stimulus were used for training. To both generate more training samples
and further promote training data diversity, training images and their associated labels were randomly ji�ered
together (i.e., translated by a small amount). �at amount was at most 10% of the input image dimensions for the
�rst network, which was determined based on the variation of the pupil center observed in the videos. �e ji�er
amount was at most 15% of the input image dimensions for the second network in order to su�ciently cover the
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spread of pupil center predictions from the �rst network. In this la�er case, ji�ering the input images allows the
second network to be trained to tolerate such errors.

5.4 Extracting PLR Metrics
In the end, the consecutive CNNs in PupilScreen take an individual image as input and return the pupil’s diameter
as output. A PLR curve shows a patient’s pupil diameter as a function of time following a light stimulus. To
construct this, videos are passed through the networks frame-by-frame. From that point, there are three post-
processing steps to make the resulting curve more comparable to the curves provided by pupillometers: (1)
Extreme prediction outliers are removed using heuristics based on human physiology: pupils should not be
smaller than 1 mm or larger than 10 mm, and the pupil diameter should not change by more than 10 mm/s [6]. (2)
Like the ground truth labels, the predictions are smoothed using a 3rd-order Savitzky-Golay �lter. �is removes
undesirable �uctuations between frames that occur because the pupil diameter is estimated from each frame
individually. (3) Predictions are scaled from pixels to millimeters using a constant factor that was estimated
through a device calibration procedure. A �ducial of known dimensions was placed in front of the camera at
roughly the same distance as the user’s eyes; its dimensions were measured in pixels and the calculated ratio
was applied to all videos. �is approach is not perfect since di�erent people have di�erent eye socket depths.
Nevertheless, the ground truth labels used for analyses are all in pixels, so the conversion is primarily used to
transform the results into more relevant units.

Relevant clinical measures (Section 2.1) can be extracted from the smoothed and scaled PLR curve. Calculations
for the constriction amplitude and the constriction percentage require the minimum and maximum pupil diameter.
�e maximum pupil diameter always occurs at the beginning of the video since the pupil is most dilated before
the light stimulus. A�er the pupil constricts, its diameter can �uctuate as it reaches its �nal equilibrium size.
Because of this, the minimum diameter is identi�ed by taking the average diameter in the last second. �e
maximum constriction velocity is calculated by computing the maximum of the centered derivatives across the
entire curve. Although PupilScreen is designed to measure the latency between the time of the light stimulus
and when the pupil begins to constrict, we found that the frame rate limits the granularity of the calculation
((30 fps)−1 = 0.03 s/frame) and the usefulness of that measure, so we ignore it for this study.

6 RESULTS
Since PupilScreen is a data-driven algorithm, the diversity of the data used to train the algorithm is important.
Section 4.1 details the diversity of the participants, but in Section 6.1, we describe the quantitative diversity of the
pupil center and diameter. We then present the accuracy of PupilScreen’s ability to localize and measure the pupil
with the two di�erent architectures that were explored, followed by an examination of how the errors manifest in
the PLR curves and a�ect the PLR metrics. We conclude with a brief evaluation of PupilScreen’s clinical e�cacy,
including how accurately clinicians can make diagnostic decisions based on PupilScreen’s estimated PLR curves
and their comments on PupilScreen’s design.

6.1 Data Distribution
�e le� side of Fig. 9 shows the distribution of the pupil center location across all users a�er the video frames were
cropped, �ipped, and scaled to millimeters. �e distribution is centered at the mean pupil center for reference.
�e distribution has a standard deviation of 3.22 mm in the x-direction. �is spread can be a�ributed to variation
in interpupillary distance and the fact that participants did not perfectly align their face within the PupilScreen
box. �e distribution has a standard deviation of 4.18 mm in the y-direction, which can also be a�ributed to
di�erent face shapes and the placement of the PupilScreen box relative to the participant’s face.

�e right half of Fig. 9 shows the distribution of the pupil diameter scaled to millimeters. �e distribution has
a mean of 4.39 mm and a standard deviation of 1.38 mm. However, the distribution is non-normal because the
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Fig. 9. (le�) The distribution of the pupil centers across all users. (right) The distribution of the pupil diameters across all
users.

pupil constricts in a logarithmic fashion, which means that the pupil only spends a small amount of time in its
fully dilated state.

6.2 CNN Results
�e cumulative distribution functions (CDFs) at the top of Fig. 10 show the distribution of the absolute errors for
the sequential network architecture. �e thick dashed line in both plots compares the results to a baseline that
assumes the mean predictions for all users; this is not meant to serve as a comparable algorithm, but rather ground
the results relative to some other estimator. Improvement over the baseline demonstrates that the networks are
learning more than just the mean value.

�e top-le� of Fig. 10 shows the CDF for the errors of the �rst network, which estimates the pupil center
for a cropped input video frame. Across all users, the distribution of Euclidean errors has a median of 0.43 mm
and a 90th percentile of 0.87 mm. �e error distributions across the di�erent iris colors are nearly identical.
�e magnitude of the error can partly be a�ributed to the pre-processing of the video frame. Input images are
downsampled by a factor of 4, which reduces the resolution of the pupil center estimation to 0.31 mm. Despite
the loss of resolution, the errors are well within the diameter of the iris (10-12 mm). In fact, most are within the
smallest observed pupil diameters (∼2 mm). Although it is ideal for the pupil to be centered in the image that is
input to the second network, the most important result is that the eye always remains in the region of interest
that is cropped around the center prediction. By ji�ering the training data, the second network is trained to
handle shi�ed images.

�e top-right of Fig. 10 shows a similar CDF plot for the errors of the second network, which estimates the
pupil diameter given an image cropped using the pupil center output by the �rst network. Across all users, the
distribution of absolute errors has a median of 0.36 mm and a 90th percentile of 1.09 mm. According to Meeker
et al. [35], the error of PupilScreen’s diameter estimation is be�er than that of manual examination (0.5 mm), but
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worse than that of a clinical pupillometer (0.23 mm). To determine if the error of the �rst network leads to greater
errors in the second network, we examined the accuracy of the second network given input images cropped
around the ground truth pupil center. We found that there was li�le di�erence between using the predicted pupil
centers and the ground truth pupil centers (50th: 0.36 mm, 90th: 1.19 mm vs. 50th: 0.36 mm, 90th: 1.15 mm). �e
fact that using the ground truth centers did not improve the accuracy of the pupil diameter estimation may be
a byproduct of the fact that the training data was ji�ered, leading the network to be invariant to exact pupil
location.

�e Bland-Altmann plots in the bo�om half of Fig. 10 show a di�erent representation of the diameter prediction
errors split across the di�erent iris colors. In all cases, the sequential network architecture tends to overestimate
the pupil diameter. If the CNN relies upon convolutional �lters that look for edges, overestimation could be
happening because those �lters are more likely to respond to regions outside of the pupil’s actual boundary. �e
mean pupil diameter errors are +0.24 mm, +0.27 mm, and +0.07 mm for blue, brown, and mixed eyes, respectively.
We �nd that the most extreme outliers belong to a small subset of participants who had particularly dark irises.
We believe that this error can be reduced with more training data from participants with similarly dark irises.

Fig. 10. The accuracy results for the sequential network architecture. (top-le�) The CDF of the pupil center prediction error.
(top-right) The CDF of the pupil diameter prediction error. (bo�om) Bland-Altmann plots showing the residuals of the
pupil diameter predictions split across the di�erent iris colors: blue, brown, and mixed from le� to right. The black lines
indicate one standard deviation from the mean.
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Fig. 11. The accuracy results for the fully convolutional architecture. (top-le�) The CDF of the pupil center prediction error.
(top-right) The CDF of the pupil diameter prediction error. (bo�om) Bland-Altmann plots showing the residuals of the
pupil diameter predictions split across the di�erent iris colors: blue, brown, and mixed from le� to right. The black lines
indicate one standard deviation from the mean.

Fig. 11 shows the same performance measures for the fully convolutional architecture. �e CDFs at the top of
the �gure show that the fully convolutional network was generally more accurate than using sequential networks.
Across all users, the distribution of Euclidean errors for the pupil center has a median of 0.20 mm and a 90th

percentile of 0.50 mm. �e distribution of absolute errors for the pupil diameter has a median of 0.30 mm, which is
closer to the observed accuracy of a clinical pupillometer than the 0.36 mm median error of the sequential network
architecture. Examining the Bland-Altmann plots in Fig. 11, we �nd that the fully convolutional architecture
tends to underestimate the pupil diameter. �e mean pupil diameter errors are -0.11 mm, -0.20 mm, and -0.55 mm
for blue, brown, and mixed eyes, respectively. Beyond the inherent di�erences between the two architectures
from a deep learning standpoint, one reason for the improved results could be the fact that explicit morphological
operations could be performed on the pixel labels; rather than hoping that the network could learn some a�ribute
in regards to smooth edges, it is easier exercise domain-knowledge and enforce such rules a�erwards. �e
post-processing could also explain why this architecture underestimated diameters; although smoothing can
remove protrusions from a jagged pupil boundary estimate, it can also shrink an otherwise correct, smooth pupil
boundary estimate.

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: 2017.



PupilScreen: Using Smartphones to Assess Traumatic Brain Injury • 0:19

�ere is a noticeable di�erence between the results for di�erent iris colors. For both architectures, images of
brown eyes led to the worst results. �e sequential network architecture had a median error of 0.41 mm and a
90th percentile error of 1.19 mm, and the fully convolutional architecture had a median error of 0.33 mm and
a 90th percentile error of 1.14 mm. �is may be because the boundary between the pupil and the iris is less
noticeable for people with darker irises, so the convolutional �lters in the networks are less likely to respond to
the appropriate regions of the eye. We also hypothesize that this is the reason for why the measured diameter
error for brown eyes does not correlate with the pupil size as it does with the lighter iris colors, a phenomenon
noted by Meeker et al. when pupils were manually examined.

6.3 Metric Evaluation
�e outputs of PupilScreen’s networks are irrelevant unless they are combined sequentially in PLR curves. For
the sake of brevity, the results from here on out come from the fully convolutional architecture since it was
slightly more accurate. To quantify how well the predicted PLR curves track the human-labeled PLR curves, their
normalized cross-correlation was calculated. �e average normalized cross-correlation across all videos is 0.91.
Fig. 12 compares several examples of PLR curves produced by PupilScreen with ground truth PLR curves from
manual annotations.

Fig. 12. Examples of predicted and ground truth PLR curves. (le�) An example where PupilScreen accurately estimates all
PLR metrics. (center) An example where PupilScreen accurately estimates the max constriction velocity, but underestimates
the constriction amplitude and percentage. (right) An example where PupilScreen accurately estimates the constriction
amplitude and max constriction velocity, but underestimates the constriction percentage.

Table 2 describes how well PupilScreen is able to predict PLR metrics relative to those measured from the
manually labeled dataset. Table 2 also shows the range of those metrics across all participants as a point of
comparison for the error magnitude. PupilScreen can track constriction amplitude with a mean error of 0.62 mm,
constriction percentage within a mean error of 6.43%, and max constriction velocity with a mean error of 1.78 mm/s.
As a point of comparison from the literature, an evaluation of PupilWare by Ra�qi et al. [42] demonstrated that
their system tracked constriction and dilation percentages with an accuracy such that 90% of their predictions fell
within 10% of the ground truth. However, there are many di�erences between PupilWare and PupilScreen that
make these results di�cult to compare. PupilScreen was evaluated on many more participants than PupilWare (42
vs. 9), but the evaluation of PupilWare aggregated a time series of percent change values rather than the single
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Table 2. PLR metric evaluation

CONSTRICTION AMPLITUDE - mm
Ground truth range 0.32-6.02
Mean absolute error 0.62
Standard deviation of absolute error 0.72
CONSTRICTION PERCENTAGE - %
Ground truth range 6.21-62.00
Mean absolute error 6.43
Standard deviation of absolute error 6.74
MAX CONSTRICTION VELOCITY - mm/s
Ground truth range 1.37-8.99
Mean absolute error 1.78
Standard deviation of absolute error 0.67

summary statistic like PupilScreen. �e two systems are also intended for di�erent applications. PupilWare is
designed to track changes in pupil size a�ributed to varying cognitive load, which tend to be smaller in amplitude
than the changes induced in PupilScreen.

Examining the predicted PLR curves further provides insight into the nature of these errors. �e center and
right plots in Fig. 12 show cases where a repeated error across frames led to the the inaccurate estimation of some
PLR metrics, but not others. In the center, PupilScreen correctly tracks the pupil diameter during constriction, but
then overestimates the �nal diameter of the pupil a�er constriction. �e max constriction velocity is correctly
estimated in these situations, but the constriction amplitude and percentage are not. On the right, PupilScreen
follows the ground truth PLR curve with a roughly constant o�set. �is means that although the absolute estimate
of the pupil diameter may be o�, the change between the minimum and maximum pupil remains unchanged.
�is behavior only a�ects the constriction percentage since it relies on an absolute baseline; the constriction
velocity and amplitude remain una�ected. Although not shown in Fig. 12, errors in all three metrics can also be
a�ributed to pupil diameter predictions that deviated from nearby frames in a manner that failed PupilScreen’s
outlier criteria but were signi�cant enough to create a de�ection in the �ltered PLR curve.

6.4 Preliminary Clinical Evaluation
To gauge PupilScreen’s diagnostic e�cacy, we supplemented our dataset with videos from six patients at
Harborview Medical Center’s trauma ward and neuro-intensive care unit (neuro-ICU). �ese individuals had
sustained signi�cant head trauma, but were stable enough at the time to be recruited for the study. �eir doctors
and nurses knew beforehand that they had non-reactive pupils. Non-reactive pupils are frequently observed in
patients whose condition is unstable, making it di�cult to use our research prototype without interfering with the
clinician’s work�ow. As before, three videos were recorded for each patient; however, there were complications
in collecting these videos, including the inability of the patients to keep their eyes open and the inability of the
clinician to maintain the position of the box while recording the videos. Because of these issues, only 24 of the 36
possible PLR curves (3 videos per patient × 2 eyes per patient × 6 patients) were suitable for analysis.

To evaluate PupilScreen’s accuracy on non-reactive pupils, we randomly selected one of the folds created
during our initial training and analysis. �e patient videos were processed using the CNNs that were trained
on that fold’s training data to produce pathologic PLR curves. An equal number of healthy PLR curves were
generated using randomly selected videos from that fold’s test set. Using the same network for both sets of videos
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guaranteed that the PLR curves were generated from networks that were trained on the same data. Fig. 13 shows
examples of both responsive and non-responsive pupils that were collected with PupilScreen. �e PLR curves
from healthy individuals have a noticeable exponential decay, whereas the PLR curves from the patients do not.

Fig. 13. A subset of (le�) responsive and (right) non-responsive PLR curves that were shown to clinicians for our preliminary
clinical evaluation.

�e PLR curves were anonymized, shu�ed, and then sent to two clinicians familiar with pupillometery. �e
clinicians were asked to classify the PLRs as either “responsive” or “non-responsive”. �ey were not told how
many curves would be in each category, nor were they shown the video recordings themselves. �e �rst clinician
was able to correctly classify every curve in our dataset. �e second clinician misclassi�ed one non-responsive
PLR curve as responsive. In that particular case, PupilScreen estimated that the person’s pupil constricted in
a slow and almost linear manner, but by a signi�cant amplitude. �e second clinician also misclassi�ed one
responsive PLR curve as non-responsive, again, due to the borderline pupil constriction amplitude.

6.5 Clinician Feedback
�roughout our design process, we asked clinicians about their personal experiences with pupillometry and
for feedback on PupilScreen’s design. �ese clinicians included surgeons, nurses, and other personnel at the
Harborview Medical Center’s neuro-ICU. Although PupilScreen is proposed as a tool to be used by team doctors
and parents, clinicians who work with TBI are far more familiar with existing pupillometry methods and their
tradeo�s and could provide far more insight beyond novelty.

One of the surprising �ndings early on was that although the clinicians were familiar with the purpose of a
pupillometer and its advantages over a penlight test, the pupillometer was hardly used in the clinical se�ing.
�e pupillometer was mainly used to track changes in PLR over a long period of time to identify worsening
injuries as quickly as possible in otherwise unresponsive patients. For diagnosis or triage, penlights are strongly
preferred for their simplicity and ease of access, despite the limited precision and lack of consistency they a�ord.
As one clinician stated, “If whatever you ask an EMT to do adds twenty seconds or so, it’s not worth it”. In fact,
we found that some clinicians use their smartphone’s �ash instead of a penlight, validating aspects of our idea.

When we asked the clinicians about the prospect of PupilScreen’s convenience, they were excited by the idea
of a smartphone app that would be in their pockets at all times. Unsurprisingly, clinicians pointed out that the
PupilScreen box was still a bulky object that needed to be carried to conduct the test, although some reasoned
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that it would be far cheaper to place multiple boxes in the neuro-ICU than multiple pupillometers. One clinician
recommended a foldable box that would be easier to transport. Another clinician suggested a monocular design
that would record one eye at a time; such a system would still require a separate component from the phone, but
it would be roughly half the size of the PupilScreen box. �e most popular suggestion was a system where no
box was required at all. Eliminating the box would make PupilScreen even more convenient than a penlight, but
removing the box eliminates control over lighting, which is crucial for ensuring that the pupil is visible and that
the light stimulus provided to the eyes is standardized. Nonetheless, this is a goal that we hope to strive for in
the future.

Another issue raised about PupilScreen’s design is the di�culty of using PupilScreen on patients who are
unconscious. In the sports-related concussion scenario, the cases that most warrant the use of pupillometry
are when the patients are conscious and can comply with most verbal instructions. In the neuro-ICU, penlights
and pupillometers are o�en used on unconscious patients, and clinicians must hold those patients’ eyelids open
with one hand in order to expose the pupil(s). �is is a manageable, but clumsy maneuver to conduct with the
PupilScreen box. Manipulating the patient’s face in this manner can also allow extra light to seep in from the top
of the box, which reduces the control over the lighting within it.

From our interviews, we believe that PupilScreen’s design will be suitable for use by team doctors and parents,
but requires further improvement for use by EMTs and other hospital clinicians.

7 DISCUSSION
Our goal was to develop a system that could quantitatively assess the severity of TBIs by measuring a person’s
pupillary light re�ex. Furthermore, we imposed the requirements that the system should be automated and easy
to deploy. We believe that PupilScreen is the �rst step toward these goals. �e PupilScreen box allows anyone to
use their phone as an inexpensive pupillometer. It does so by blocking out ambient lighting while allowing the
smartphone to provide its own light stimulus from the �ash. Using two sequential CNNs, PupilScreen measures
the pupil center with a median error of 0.43 mm and the pupil diameter with a median error of 0.36 mm. Using
a fully convolutional network, PupilScreen achieves median errors of 0.20 mm and 0.30 mm for those same
two measures, respectively. Once we found that PupilScreen could track the PLR with reasonable accuracy, we
conducted a preliminary clinical trial with six patients who had su�ered a TBI. When clinicians were given PLR
curves from both healthy and injured individuals, they were almost always able to reach the correct diagnosis.

7.1 Hardware
�e low-�delity nature of the PupilScreen box has advantages and disadvantages. �e only requirements on
the box were that it needed to block out light from the environment and that it allowed the smartphone’s �ash
to illuminate the patient’s eyes. A variety of materials for the box could have satis�ed these requirements. We
3D-printed the box using PLA plastic for durability over the course of the study. �e PupilScreen box could easily
be mass-produced using injection molding for similar results. Since the box does not require any embedded
electronics outside of the user’s smartphone, people can even construct their own PupilScreen box using sti�
cardboard. �is last idea is particularly enticing because it could allow for the generalization of our system
throughout the diverse smartphone ecosystem. �e PupilScreen box used in the study was made speci�cally with
iPhones in mind since they have a more uni�ed design. Later models (iPhone 4 or a�er) have both the camera
and �ash on the top-le� corner at the back of the phone, which lent itself to the design shown in Fig. 4. Android
phones come in all sorts of di�erent con�gurations and shapes, which would require a dedicated box design for
each model or a con�gurable box to cover all of them.

Beyond the design of the PupilScreen box, the diverse smartphone ecosystem could in�uence the diagnostic
e�cacy of PupilScreen, although we believe these e�ects would be minimal. Di�erent smartphone models may
have di�erent �ash LEDs, but most are bright enough to cause a similarly signi�cant PLR. PupilScreen could tune
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its thresholds for various PLR metrics based on information about the �ash LED that can be stored in a lookup
table. �ere is larger variation in smartphone cameras across speci�cations, including sensitivity and resolution.
Cameras can respond to various wavelengths of light in di�erent ways. We believe this should have minimal
impact on PupilScreen’s CNN-based approach since the convolutional �lters should still respond in a similar
manner if preprocessing or calibration can be employed to standardize input frames. With regards to camera
resolution, a higher resolution translates to a higher pixel-per-mm ratio given a �xed camera placement and focus.
A higher pixel-per-mm ratio allows PupilScreen to detect smaller changes in pupil diameter and measure the
PLR with increased precision. In cases when the resolution is too low, PupilScreen could incorporate a zooming
procedure that maximizes the pixel-per-mm ratio without sacri�cing focus. However, too much variability in
resolution could lead to issues since the �lters in PupilScreen’s CNNs have �xed pixel sizes and may be trained to
only recognize contours within certain scales.

By relinquishing lighting control to the smartphone, the current PupilScreen design is limited in what kind of
responses it can capture. In our evaluation, we only examined pupil constriction, not dilation. �is is because
there is no intermediate lighting state between the on and o� stages of the smartphone’s �ash, and when the
�ash is o�, the camera cannot see the patient’s eyes. Some smartphone models are beginning to provide multiple
�ash LEDs (e.g., iPhone 6), but we found there was not enough of a di�erence between them to induce signi�cant
pupil diameter changes. Early in our design phase, we brie�y experimented with using the smartphone’s screen
as the lighting source. We decided against this design because most smartphone screens are not su�ciently
bright to make the eyes visible within the PupilScreen box. Furthermore, since most front-facing cameras are on
the corner of the smartphone, the screen illuminates the patient’s face at an angle when the camera is centered
between their eyes. �is can form a light gradient across the patient’s face, or worse, a shadow on an eye, creating
undesirable noise in the data.

7.2 So�ware
One might argue that we did not collect enough data to su�ciently train the networks’ thousands of parameters.
We a�empted to mitigate some of these issues by ji�ering our data during training and starting with a pre-trained
network in the case of the fully convolutional architecture; however, we recognize that more data is always
be�er. Beyond collecting more data in the same manner as we have in the past, we plan to incorporate synthetic
datasets, such as SynthesEyes by Wood et al. [53], to develop a more diverse dataset. We may also explore ways
of scraping the web for images to further bolster our dataset.

�ere is more exploration le� to be done concerning the optimal CNN architecture for identifying the pupil.
One drawback from using CNNs on individual video frames in general is that consecutive frames are treated
independently until predictions are combined for the PLR curve. �is approach does not account for the fact
that the pupil changes size continuously and, therefore, nearby frames should have correlated pupil diameters.
PupilScreen uses low-pass �ltering to reduce unnecessary variation between nearby frames. Another way to
account for frame continuity would have been to use an algorithm that trains on entire sequences, such as a
continuous-time recurrent neural network. We chose not to do this because it requires a signi�cant number of
examples for both reactive and non-reactive pupils, which would only be feasible with a larger deployment. �ere
is also the possibility that such an approach could bias towards learning the typical PLR, leading to diagnostic
false negatives. Although using two sequential CNNs led to slightly worse results, the full range of possible
structures for those networks was not explored. As pointed out by Chellapa [53], factors related to network size
(e.g., memory footprint, number of parameters, training time) are still an open challenge in the deep learning
community. Staying up to date with advancements in that �eld while focusing on the our speci�c task will be
important for eventually moving PupilScreen to a con�guration that does not require a server.

Most of our participants complied with PupilScreen’s procedure, meaning that they blinked as li�le as possible
and kept their gaze toward the camera. �ese constraints are also imposed by pupillometers; if the patient does
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not comply, the pupillometer rejects the trial and requests a retest. Both pupillometers and PupilScreen currently
handle blinking in di�erent ways that lead to similar results. Pupillometers explicitly localize the pupil using
infrared light. If they cannot �nd the pupil, the PLR curve for those frames has a null value. As long are there are
not too many null values in the PLR curve, the pupillometer interpolates the pupil diameter for those frames.
PupilScreen does not include an explicit blinking detection step, so all frames are tested through the CNNs
regardless of the whether the pupil is visible in them or not. �at being said, the CNNs are only trained on images
where the pupil is visible, so cases when the pupil is not visible lead to outlier results that are handled through
the post-processing described in Section 5.4. We found that cases of blinking were not a signi�cant source of
error in PupilScreen’s results, but a blink detector [36] could be incorporated at the beginning of PupilScreen’s
pipeline so that irrelevant frames are accounted for sooner.

Handling di�erent gaze directions is a simpler ma�er for both PupilScreen and pupillometers. Pupillometers
�t an ellipse, not a circle, to the pupil. If the ellipse’s eccentricity is too low (e.g., its axes are uneven), the frame is
rejected just as a frame with a blink. �e data for PupilScreen was also originally labeled as ellipses. �e elliptical
labels were converted to a circular representation where the diameter was de�ned as the average of the ellipse’s
axes, so the CNNs are trained to interpret the ellipses in that manner. �e maximum of the ellipse’s axes could
have been a be�er summary of the pupil since the dimension parallel to the direction of the rotation decreases
in size; however, we chose to use the mean as a compromise between this phenomenon and the fact that some
pupils have small protrusions along their perimeter that arti�cially extend their clinically signi�cant boundary.

7.3 Future Applications
PupilScreen is primarily targeted toward individuals interested in assessing the severity of head trauma, whether
it be a high school coach checking for concussions or an EMT checking the extent of a more general TBI. Zafar
and Suarez [55] note that most of the studies involving the diagnostic signi�cance of pupillometry are limited due
to small sample sizes. �e clinical study we conducted has the same issue since it only included six individuals
who had su�ered signi�cant head trauma. We were limited to individuals who were in a stable condition because
clinicians were hesitant of introducing yet another instrument into their work�ow during time-critical situations.
Following their suggestions, we plan to explore the possibility of removing the PupilScreen box. Rather than
imagining PupilScreen as an inexpensive pupillometer, removing the box would turn PupilScreen into a more
quantitative penlight exam, sacri�cing consistency and standardization in favor of convenience. Ensuring that
the penlight exam is conducted in a reasonable manner would become the responsibility of the user interface.
Visual guides could show an inexperienced user how close the phone should be from the patient’s face, and
feedback could be provided if the pupils were not su�ciently stimulated by the light.

We believe that by making pupillometry more accessible in this manner, we can enable researchers to reassess
previous studies with greater sample sizes. In fact, we plan to conduct a follow-up study looking at the correlation
between PupilScreen, a clinical-grade pupillometer, and the tools currently used by American football teams for
assessing concussions (e.g., the King-Devick test and the SCAT). We also plan on examining how our technique
can be used to check for other eye-related conditions that may indicate a TBI, such as involuntary eye movement
[27] and poor visual tracking performance [31, 32].

8 CONCLUSION
Traumatic brain injuries require rapid assessment to ensure that the proper measures are put into place to
maximize a patient’s chances of a recovery. Measuring the pupillary light re�ex (PLR) is a quantitative method
that screens for injury to multiple brain regions. Although methods exist for performing such a test, they are
either expensive or inexact. To this end, we have presented PupilScreen, a smartphone app and accompanying
3D-printed box that enables anyone to automatically measure a person’s PLR. PupilScreen relies on convolutional
neural networks to estimate pupil diameter within a video as the smartphone’s �ash causes the pupil to constrict.
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We evaluated two di�erent architectures on data collected from 42 healthy individuals and found that using a
fully convolutional network could achieve a median error of 0.30 mm when measuring the pupil diameter. We
also conducted a pilot clinical evaluation with six patients who had su�ered a TBI, in which clinicians were
able to correctly di�erentiate between patients and healthy individuals with almost perfect accuracy using
PupilScreen’s output alone. It is our hope that PupilScreen will enable researchers to conduct additional future
studies evaluating the diagnostic signi�cance of the PLR.
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