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Abstract— Spirometry plays a critical role in characterizing
and improving outcomes related to chronic lung disease. How-
ever, patient error in performing the spirometry maneuver,
such as from coughing or taking multiple breaths, can lead
to clinically misleading results. As a result, spirometry must
take place under the supervision of a trained specialist who
can identify and correct patient errors. To reduce the need for
specialists to coach patients during spirometry, we demonstrate
the ability to automatically detect four common patient errors.
Creating separate machine learning classifiers for each error
based on features derived from spirometry data, we were able
to successfully label errors on spirometry maneuvers with an F-
score between 0.85 and 0.92. Our work is a step toward reducing
the need for trained individuals to administer spirometry tests
by demonstrating the ability to automatically detect specific
errors and provide appropriate patient feedback. This will
increase the availability of spirometry, especially in low resource
and telemedicine contexts.

I. INTRODUCTION

Spirometry is the most commonly used test of lung
function available in primary care and specialty settings. The
test plays a critical role in identifying and managing chronic
lung diseases such as chronic obstructive pulmonary disease
(COPD) and asthma [1]. During a spirometry maneuver, a
patient rapidly exhales into a monitoring device, which tracks
the flow and volume of air exhaled from a patient, as shown
in Fig. 1. Commonly, physicians interpret flow vs. volume
(FV) and volume vs. time curves (VT) (Fig. 2) to understand
the respiratory health of the patient.

Increasing access to spirometry enables more frequent
monitoring of patient health, which can lead to improved
outcomes and lower health care costs [2]. To achieve this, re-
cent efforts have focused on creating and evaluating cheaper
and more portable devices that can be used in homes and
low resource settings [3, 4, 5, 6].

Normally, trained professionals administer and monitor
testing, coaching the patients through the maneuver to ensure
clinically useful spirometry measures. Despite the increase in
the availability of portable spirometry outside of traditional
clinical settings, patients still need coaching and feedback on
the maneuver. Due to the difficulties in training personnel
to administer and monitor testing, this presents a problem
in delivering spirometry to new markets. Even in contexts
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Fig. 1: An example of a spirometry device

Fig. 2: Example output flow vs volume (FV) and volume vs
time (VT) curves from spirometry.

where spirometry is widespread, there is a shortage of trained
professionals. A study of primary care spirometry practices
in Australia found that 64% of professionals administering
tests had received less than 14 hours of training in conducting
spirometry [7]. This can have serious ramifications for the ef-
fectiveness of spirometry as a clinical tool; professionals with
inadequate training could only produce acceptable spirome-
try maneuvers from 60% of their patients nine months after
training [8].

Automatic feedback to patients after the incorrect execu-
tion of a spirometry maneuver provides an attractive solution
to reducing the need for trained professionals. Many spirom-
eters currently give automated feedback based upon numeric
guidelines published by the American Thoracic Society
(ATS) and European Respiratory Society (ERS) [9, 10, 11].
These features include the amount of volume exhaled in the
first second of the test, and the total length of the test. Current
ATS/ERS guidelines, which examine a limited number of
features derived from spirometry curves, suffer from poor
performance in classifying the clinical quality of spirometry
curves, achieving a correct classification only 80.6% of the
time with 90% sensitivity and 56% specificity [11]. As a
result, visual inspection by a professional remains the gold
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standard for evaluating spirometry curves. Recently, Umberto
et. al. improved quality assessment by adding additional
features to ATS/ERS guidelines, categorizing spirometry
curves as of acceptable, unacceptable, or unknown (requiring
an expert to evaluate) clinical quality using a variety of hand-
picked features in a manually constructed decision tree model
[12].

We improve spirometry by detecting specific patient errors
with actionable outcomes: variable flow throughout the ma-
neuver, coughing during the maneuver, extra breaths taken
through the maneuver, and early termination of the maneuver.
Although some patient errors (e.g. slow start and sub-
maximal flow) have well-defined numeric guidelines [13],
the errors we chose to classify are more subjective and still
often rely on visual inspection for detection. Furthermore,
although past work has used carefully chosen thresholds
on manually-tuned features for classification, we use ma-
chine learning methods to automatically learn a classification
model. Each of these common errors has prescribed actions
to help patients ensure they do not make the same error
during later spirometry maneuvers [14]. For example, if a
patient is inadvertently taking extra breaths through their
nose near the end of the maneuver, nose clips might be
applied as a solution to improve the quality of the maneuver
[14]. Our results for automatically detecting patient errors
therefore have actionable outcomes for improving the clinical
quality of spirometry maneuvers. Overall classification F1-
scores of 0.92024, 0.86498, 0.85515, and 0.84629 were
achieved for the respective errors of early termination, cough,
variable flow, and extra breath.

II. BACKGROUND

Below is a brief description of each error detected [14, 9]
and a visual representation (Fig. 3).

1) Early Termination: Early termination of the spirometry
maneuver occurs when the patient has not exhaled all the air
from their lung. Additionally, if a spirometry maneuver is
not of sufficient length, a maneuver may be labeled with the
early termination error. On a VT curve, this is characterized
by the lack of a plateau in total recorded volume. On a FV
curve, this is characterized by an abrupt drop-off in flow near
the end of the test. Common coaching for this error entails
encouraging the patient to keep blowing through the test until
they empty their lungs.

2) Cough: Coughing during the test can disrupt clinically
useful metrics such as the volume of air exhaled in the first
second of the maneuver. On a VT curve, this is characterized
by a period where the recorded exhaled volume plateaus for
a short period of time. On a FV curve, this is characterized
by a sharp drop in flow followed by recovery. A common
solution to deal with this error is to give the patient a glass
of water.

3) Variable Flow: Variable flow occurs when the flow
of exhaled air varies substantially throughout the maneuver.
This can affect clinically useful measurements such as the
total volume of air the patient can exhale in the first second or
the maximum flow of air a patient can exhale. On a FV curve,

this is characterized by dips in flow smoother than those of
a cough. A common solution to deal with this error is to
coach the patient to blow air out harder and keep blowing
through the maneuver.

4) Extra Breath: Extra breaths may be accidentally taken
in through the nose or the edges of a patient’s mouth sur-
rounding the spirometry mouthpiece. This can lead to falsely
reported statistics related to the patient’s lung capacity. On
a VT curve, this can be characterized by smaller versions of
the standard VT curve shape appearing after volume readings
plateau. On a FV curve, this can be characterized by smaller
peaks in flow that appear at the end of the maneuver. A
common solution to deal with this error is to use nose clips
or instruct the subject to keep a tighter seal around the
spirometry mouthpiece.

III. MATERIALS AND METHODS
A. Data Source

TABLE I: Overview of Data Set

Metric Value
Total curves in data set 19880 curves

Sample rate FV/VT curve 0.06 L/16.67 Hz
Mean age 19.17 years

Std. age 17.29 years
Age in years 3 - 95 years

Curves from clinical spirometers collected since 2011 as
part of a training effort were uploaded onto an online labeling
system1 for offline evaluation and feedback. An overview of
the data can be found in Table I. Of note is most of the
collected curves (72.2%) came from patients between the
ages of 6 and 18. Six trained respiratory therapists annotated
the curves with the appropriate error labels and entered
feedback on the quality of the maneuver. For each curve used
in training classifiers, a single expert annotated the presence
of relevant errors. For each curve used in testing classifiers,
a head annotator decided upon the final labels for the curve.
Separate classifiers were trained to detect the presence of
each error. For this analysis, separate training and testing sets
for each error were created by sampling data from a larger
set of curves that was labeled with the pertinent error and
only that error as positive cases. At no point was the entire
data set utilized for training classifiers to avoid bias issues
arising from error imbalances in the dataset. An equally-sized
random sampling of curves with no errors was used as the
negative case for each classifier.

B. Training and Testing

Because our dataset was annotated by multiple experts,
this introduces the potential for noisy labels. Since ensem-
ble methods tend to be outperform other classifiers in the
presence of noise, we use AdaBoost classifiers with decision
trees as the base estimator. For training, 90% (N=17882)
of the data was used and the remaining curves were held
out for testing. Features for detecting the presence of errors
were created by feedback from doctors, spirometry training

1http://www.spirometry360.org
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Early Termination Cough

Extra Breath Variable Flow

Fig. 3: Example curves demonstrating features which indicate each error. The red line represents a maneuver with the
specified error while the dotted blue line represents a similar maneuver without the specified error

materials, [14, 9], and features derived from earlier work
on determining spirometry quality [12]. In total, 68 different
features were extracted for each error. After class balancing,
a total of 5728, 1344, 5614, and 1314 curves were used to
train for the early termination, cough, variable flow, and extra
breath errors drawing from the 17882. Each classifier was
then tested on a completely separate set of curves whose
labels had been annotated by a single respiratory therapist
with over a decade of experience. In total, 1998 curves were
part of the overall testing set. For each error, a minimum
of 486 curves were used for testing utilizing the partitioning
process used in training. The number of error and error-free
curves were balanced in each set.

C. Evaluation

Metrics used for evaluating the efficacy of classification
include the precision, recall, and F1-score of each classifier
when applied to a testing set. Consider spirometry curves
which are labeled with the presence of a relevant error
being detected by a classifier. Let such spirometry curves
be considered a positive case for classification. Let tp, fp,
tn, fn be the number of true positives, false positives, true
negatives, and false negatives in classifying the testing set

for each classifier. Precision P , recall R , and F1-score F1
are defined as:

P =
tp

tp + fp
R =

tp
tp + fn

F1 = 2
PR

P +R

IV. RESULTS
A. Features

Though all features were used in the AdaBoost classifier,
below are the two most significant features for classification
as decided by utilizing the Gini importance metric in the
decision tree models used.

1) Early Termination:
• The total time elapsed during the maneuver
• The volume exhaled in the last second of the maneuver
2) Cough:
• A heuristic for the total amount of time the slope in the

VT is relatively flat. This is obtained by examining the
period of volume exhaled where the slope of the FV
curve is less than 10% of the maximum slope.

• The maximum slope in the FV curve after peak flow.
3) Extra Breath:
• The minimum slope in the VT curve.
• The maximum slope in the FV curve after peak flow.
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Fig. 4: Receiver operating characteristic curves demonstrat-
ing the performance of each error classifier

4) Variable Flow:
• The maximum slope in the FV curve after peak flow.
• The sum of the total first derivative whose values were

positive after the area of highest flow in the FV curve.

B. Classification Error

Table II shows the performance of each classifier on the
held out dataset. Each error was evaluated against on a set
of curves that had been annotated with either a single error,
or no error. Using the weighted confidence scores of base
estimators in each classifier, we construct receiver operating
characteristic (ROC) curves, as shown in Fig 4.

TABLE II: Classifier Performance

Error Precision Recall F1-Score
Early Termination (n=486) 91.5% 92.6% 0.920
Cough (n=446) 81.7% 91.9% 0.865
Variable Flow (n=528) 79.3% 92.8% 0.855
Extra Breath (n=538) 82.4% 87.0% 0.846

V. DISCUSSION

Our work provides a baseline for future work in automatic
error detection in spirometry. As there are significant issues
in the quality of spirometry being performed in clinical
practice due to a lack of training [15, 7], our results suggest
that automated error detection could be a promising solution.
Future areas of work could include automatic diagnosis
of chronic lung diseases such as COPD and asthma from
spirometry data.

However, there is still room for significant improvement.
For example, in our analysis, we considered only spirometry
curves with one labeled error (e.g. only extra breath), ignor-
ing the effects of compounded errors (e.g. extra breath and
variable flow). We leave an analysis of these effects to future
work. Furthermore more complex feature engineering may
be needed to improve classification performance on chosen
errors. A promising area of future research is to investigate

the use of recurrent neural networks (RNNs) which can be
adept at recognizing patterns in time series data, removing
the need for manually constructed features.

There are also limitations related to the dataset used in
our work. A majority of the curves used came from those
between the ages of 6 and 18. In the future, classification
should be done across a more even distribution of ages
to ensure proper generalization of models to all ages. Fur-
thermore, labels in the training dataset were provided by 6
labelers. As a result, it is possible that variance between
labelers in labeling specific errors may exist. Compound-
ing this, the training set was annotated only by a single
professional rather than a group or pair. Further validation
should be done using data whose labels have been verified by
multiple experienced professionals. In addition, as the data
set was heavily anonymonized analysis and control of patient
information, including the number of unique patients could
not be done. Nevertheless, our initial results are promising
and shows potential in automating coaching and feedback in
spirometry.
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