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ABSTRACT 
Cost and accessibility have impeded the adoption of 
spirometers (devices that measure lung function) outside 
clinical settings, especially in low-resource environments. 
Prior work, called SpiroSmart, used a smartphone’s built-in 
microphone as a spirometer. However, individuals in low- 
or middle-income countries do not typically have access to 
the latest smartphones. In this paper, we investigate how 
spirometry can be performed from any phone—using the 
standard telephony voice channel to transmit the sound of 
the spirometry effort. We also investigate how using a 3D 
printed vortex whistle can affect the accuracy of common 
spirometry measures and mitigate usability challenges. Our 
system, coined SpiroCall, was evaluated with 50 
participants against two gold standard medical spirometers. 
We conclude that SpiroCall has an acceptable mean error 
with or without a whistle for performing spirometry, and 
advantages of each are discussed.  
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Health sensing; spirometry; mobile phone sensing; signal 
processing; machine learning. 

ACM Classification Keywords 
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INTRODUCTION 
Portability, low-cost, and sensing capabilities provide 
mobile phones a distinct advantage in health sensing. 
Phone-based health applications often save patients from 
using and carrying dedicated medical devices. This 
advantage is particularly apparent in the management of 
chronic diseases, where patients frequently use health tests 
to monitor disease progression and manage treatment. 

Recently, a number of health applications have been 
developed to estimate physiological measures such as 
heart rate [13], respiratory rate [8,12], pupillary dilation 
[14], and newborn jaundice [5]. Larson et al. [9] introduced 
SpiroSmart, a smartphone-based spirometer that measures a 
user’s lung function using the phone’s built-in microphone. 
Spirometry is the mainstay for measuring lung function and 
standard of care for diagnosing chronic lung impairments, 
such as asthma, chronic obstructive pulmonary disease 
(COPD), and cystic fibrosis. During spirometry tests, 
participants forcefully exhale as much air as they can from 
their lungs. The spirometer measures the instantaneous flow 
and cumulative volume of exhaled air. It then calculates 
multiple lung function measures to help diagnose and 
manage various pulmonary conditions.  

Introduced in 2012, SpiroSmart [9] is a smartphone 
application that records the user’s exhalation and sends the 
audio data generated to a central server. The server then 
calculates the expiratory flow rate using a physiological 
model of the vocal tract and a model of the reverberation of 
sound around the user’s head. SpiroSmart was an important 
step in making spirometry more accessible, and since its 
introduction, it has been involved in numerous clinical 
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Figure 1. A user using SpiroCall on a feature phone 
(Sony w580i) with, and without a SpiroCall whistle. 



studies. SpiroSmart is currently deployed in multiple 
locations around the world, including Seattle and Tacoma 
in USA, Khulna in Bangladesh, and Pune in India. Thus far, 
we have collected data for around two thousand patients 
using SpiroSmart with encouraging results. While an 
analysis of the collected data is not the focus of this paper, 
we highlight four challenges that have surfaced from the 
SpiroSmart deployments: (1) SpiroSmart requires a 
smartphone; (2) usability and training challenges exist; (3) a 
patient with severely low lung function might not generate 
any sound; and (4) algorithms created from audio collected 
on a specific smartphone model may not generalize to other 
models or brands. In this paper, we critically examine ways 
to address these challenges and evaluate our proposed 
solutions with a set of 50 new patients. 

Smartphones are becoming prevalent at a breathtaking rate, 
yet more than half of the mobile phone users in sub-Saharan 
Africa and South Asia will still be using a non-smartphone 
(or feature phone) in 2020 [4]. A major portion of the 
population suffering from lung impairments lives in these 
low resource environments. In fact, according to a recent 
WHO report, more than 90% COPD deaths occur in low- 
and middle-income countries [19]. Thus, we believe that 
phone-based spirometers need to work on all mobile 
phones, and not just programmable smartphones. Even 
smartphones, the diversity of phone manufacturers and 
models makes it challenging to manage custom applications 
for every type of mobile phone.  

To this end, we present SpiroCall (Figure 1), a call-in 
service that measures lung function on any mobile phone 
without the need for a locally running application. Unlike 
SpiroSmart, it transmits the collected audio using the 
standard voice telephony channel. A server receives the 
data of degraded audio quality and calculates clinically 
relevant lung function measures and reports to the 
participants using audio or text message. The ability to use 
a server to analyze audio data transmitted from any mobile 
phone, be it a feature phone or smartphone, eliminates the 
need to develop a specialized application for every phone 
platform. SpiroCall combines multiple regression 
algorithms to provide reliable lung function estimates 
despite the degraded audio quality over a voice 
communication channel. 

Although the call-in service removes the need for a 
smartphone, there are other significant usability challenges 
that are more difficult to mitigate: how a user holds the 
phone (angle, microphone occlusion, etc.), the distance 
from the user’s mouth to the phone, and how wide a user 
opens their mouth. Recognizing that some people may not 
be able to master the technique needed to perform this 
maneuver, we also designed a simple and low-cost 3D-
printed whistle accessory. The whistle (Figure 1, Top) 
generates vortices as the user exhales through it [17,18], 
changing its resonating pitch in proportion to the flow rate. 
The whistle does not have any moving parts and is as 

simple as any spirometer mouthpiece. Despite the 
additional hardware, the whistle offers several important 
advantages: (1) the acoustic properties of the whistle are 
more consistent than a user’s vocal tract and generate 
audible sounds even at lower flow rates, (2) the whistle 
removes the effect of distance from the user’s mouth, and 
(3) precisely controlling mouth shape and phone orientation 
are less important. In this paper, we investigate viability of 
the call-in service approach with and without the whistle. 

We evaluated SpiroCall in a controlled study with 50 
patients. We compare SpiroCall to two FDA approved 
spirometers and evaluate the effect of using the voice 
communication channel on the performance of SpiroCall. 
Each patient performed spirometry efforts with and without 
the whistle on two different phones recording the audio 
through the cell phone network and two smartphones 
recording the audio locally through an app. Participants 
used two different sizes of vortex whistles to determine 
whether different sizes work better for different individuals. 
Our results show that without a whistle, SpiroCall has a 
mean error of 7.2% for the four major clinically relevant 
lung function measures. For FEV1% (the most commonly 
used diagnostic measure [2]), the mean error is 6.2%. With 
a whistle, SpiroCall has a mean error of 8.3% for the four 
measures, and 7.3% for FEV1%. Although, using the 
whistle leads to higher average error in lung function 
estimation, it performs more consistently for people with 
lower lung function and produces fewer over-estimations of 
lung function (i.e., false negatives), as compared to when 
not using a whistle.  

The main contribution of this paper is a demonstration that 
every mobile phone in the world can be used as a 
spirometer. This contribution comes in four parts: (1) an 
algorithm to estimate lung function from a standard 
telephony voice channel’s degraded audio signal; (2) a 
custom-designed whistle that reduces usability and 
performance challenges; (3) a comparison of the call-in 
service and the whistle against two clinical spirometers 
(using different phones); and (4) a demonstration of how 
poor quality audio, transmitted across the standard 
telephony voice channel, can be utilized for modeling and 
inference. 

BACKGROUND OF SPIROMETRY 
Spirometry is the most widely employed pulmonary 
function test. Many different types of spirometers are 
available, ranging from big, clinical spirometers to portable, 
home spirometers. Their cost also varies from $1,000 USD 
to $5,000 USD. During a spirometry test, the patient takes 
the deepest breath possible and then exhales with maximum 
force for as long as possible. The spirometer measures the 
amount and speed of airflow and calculates various lung 
function measures based on the test. Four of the most 
important lung function measures are: 
(1) Forced Vital Capacity (FVC): Total volume of air 

expelled during the expiration, 



(2)  Forced Expiratory Volume in one second (FEV1): 
Volume of air expelled in the first second of expiration, 

(3)  FEV1/FVC (FEV1%): Ratio of FEV1 and FVC, and 

(4)  Peak Expiratory Flow (PEF): Maximum expiratory 
flow rate reached during the test. 

A healthy individual’s lung function measures are generally 
at least 80% of the values predicted based on their age, 
height, and gender [7]. Abnormal values of FEV1% are 
(expressed as a percent of predicted value) [10]: 
• Mild to Medium Lung Dysfunction: 60-79%, 
• Moderate Lung Dysfunction: 40-59%, and 
• Severe Lung Dysfunction: below 40%. 
Apart from the numerical measures, spirometers also 
generate flow vs. time, flow vs. volume, and volume vs. 
time plots. Figure 2 shows examples of FV plots. In a 
healthy individual, the descending limb of the FV plot is 
almost a straight line (black, solid line in Figure 2). As 
obstruction to the airflow increases, the flow rate decreases 
faster than exponentially after reaching its maximum value 
(PEF). Therefore, it attains a curved or “scooped” slope 
(blue, dashed line in Figure 2). For an individual suffering 
from a restrictive lung disease, such as cystic fibrosis, the 
respiratory muscles weaken and the patient’s lung capacity 
(FVC) decreases (red, dashed line in Figure 2). 

DESIGN OF SPIROCALL 
The previous work of SpiroSmart offloaded a significant 
chunk of computation to a server, with the audio transferred 
via an Internet connection. Thus, the received audio was 
lossless and free of artifacts. In SpiroCall, we leverage the 
voice communication channel to transmit the audio data to 
a server. The server then uses machine learning to compute 
lung function measures. The features used by our machine 
learning model fall into three categories: temporal envelope 
detection, spectrogram processing, and linear predictive 
coding (LPC). The cellphone channel (GSM) uses LPC to 
encode voice. This means that even though the GSM 
channel compresses the audio signal, the values of LPC 
coefficients remain largely preserved. Landlines, or POTS 
(Plain Old Telephone Service) is also an attractive option as 
a communication channel. However, we do not focus on 
POTS in this paper because GSM networks are far more 
prevalent than landlines in the developing world.  

Lung Function Estimate without Whistle 
Figure 3 shows spectrograms of a spirometry effort 
recorded locally on a smartphone (Left) and the same effort 
after the data is sent through a GSM cell phone network 
(Right). The device type is an iPhone 4S in both cases. 
There are significant differences between the two 
spectrograms as the voice undergoes many changes as it 
goes through a communication channel. Although different 
communication networks use different speech coding 
techniques, all GSM/UMTS speech-coding algorithms 
share similarities in their treatment of speech and are based 
upon the same underlying linear prediction approach. 

First, all GSM voice coding technologies use a source-filter 
model for speech. That is, the “source” estimates the lung 
or glottis excitation, and the “filter” estimates how the vocal 
tract blurs this excitation into continuous sound. Parameters 
of the source and filter are then transmitted through the 
channel, instead of the raw audio. The most common 
method for separating out the source excitation from the 
vocal tract filter is to use LPC. An artifact of the LPC 
calculation is that the strong frequency resonances are 
preserved (and are calculable directly from the LPC 
coefficients). These resonances are also the primary 
features in our algorithms. As such, we expect the LPC 
encoding to preserve much of the important information in 
the signal. An example of this is shown in Figure 3 – the 
fundamental resonance is easily seen in both recordings 
(inside the red box), despite many smaller details, such as 
higher harmonics of the fundamental resonance and all 
spectral energy above 4 kHz, being lost. 

Additionally, the transmission process suppresses low-
energy components in the signal, as can be seen in 
Figure 3 (Right) where the energy of the signal abruptly 
cuts off in patches. In contrast, the signal maintains high 
fidelity and stays above the noise floor for the initial (and 
relatively louder) segment of the effort (inside the red box 
in Figure 3, Right).  

 

 
Figure 3. (Left) Spectrogram of a spirometry effort recorded 
locally, and (Right) recorded through the voice channel. The 
GSM network downsamples the audio, and the data over 
4 kHz is lost. However, the data in our main region of interest 
(red square) is largely reconstructable. 

 
Figure 2. Example of different Flow vs. Volume curves and 
major lung function measures.  



Algorithm for Lung Function Estimation over a Voice 
Channel without a Vortex Whistle 
In order to deal with the drastic variation in sound quality 
as the data goes through a GSM channel, we sought to 
evaluate what modifications are necessary to the algorithm 
proposed in the original SpiroSmart paper [9].  

We use the microphone as an uncalibrated pressure sensor 
and the received pressure values are transformed using 
three approaches (Figure 4): (1) envelope detection, (2) 
resonance tracking in the frequency domain, and (3) linear 
predictive coding (LPC). The envelope of the signal can be 
assumed to be a reasonable approximation of the flow rate 
because it is a measure of the overall signal power (or 
amplitude) at low frequencies. In the frequency domain, 
resonances can be assumed to be amplitudes excited by 
reflections in the vocal tract and mouth opening—and 
therefore should be proportional to the flow rate that causes 
them. Finally, we can use linear prediction as a flow 
approximation. Linear prediction assumes that a signal can 
be divided into a source and a shaping filter and it estimates 
the source power and shaping filter coefficients. The 
“filter” in our case approximates the vocal tract. The 
“source variance” is an estimate of the white noise process 
exciting the vocal tract filter—in our case, this 
approximates the power of the flow rate from the lungs. 
Each approach generates multiple time-domain flow-rate 
estimations.  

We extract separate feature sets for FEV1, FVC, and PEF 
from these time-domain flow-rate estimations. For example, 
PEF is defined as the maximum flow reached in an effort. 
Thus, for a given flow-rate estimation, we take the max 
value and use it as a feature for PEF regression. In contrast, 
FVC is defined as the total volume of air exhaled. Thus, 
integrating the flow-rate estimation with respect to time 
gives us a feature for FVC regression. Using this approach, 
we generate 3 sets of of 38 features for FEV1, FVC, and 
PEF, each. We do not use any regression algorithm to 
estimate FEV1%. This value is simply a ratio of the 
estimated FEV1 and FVC. 

Considering that the GSM channel uses LPC to encode 
sound, the LPC-based features used in our algorithms 
remain largely preserved. The envelope detection-based 
features are based on the coarse amplitude of sound with 
respect to time; in most cases these features remain 
preserved as well. The spectral features are most affected 
by the GSM channel because the high frequency details are 
completely lost. However, upon analysis we realized that 
the resonances within the first harmonics were strong 
enough that most spectral features contain some relevant 
information.  

In the original algorithm, the calculated features were sent 
to a random forest regression that, because it has no 
underlying linear model, had trouble exploiting some of the 
linearity in the feature data. The algorithm performed 
poorly on the data collected through the GSM channel and 

it over-estimated the lung function for participants with 
obstructed lungs (FEV1% < 0.8). Therefore, we have 
updated the algorithm to employ an ensemble of four 
different regression algorithms (Figure 4), with the aim that 
each regression would provide a different perspective. We 
run the regressions using the scikit-learn toolkit in Python 
and use leave-one-patient-out cross-validation to avoid 
overfitting. Furthermore, we keep all the parameters for all 
the algorithms at their default values and do not tune them 
for the collected data.  

The first regression is a linear regression that tries to find a 
linear relationship between the features and the ground truth 
lung function value. The second regression uses least angle 
regression (LARS) [3]. LARS selects the most useful 
features using a variant of forward feature selection, but the 
underlying model is assumed to be linear. The third 
regression uses the elastic net algorithm [20], which 
eliminates features in a slightly different way than LARS. 
This regression uses a combination of LASSO regression 
and ridge regression for regularization that is often more 
stable. Finally we use enclosing k-Nearest Neighbor 
regression (k = 2) [6], which finds the convex hull of the 
data in the feature space and fits a locally linear regression. 
Though the underlying model is assumed linear, the local 
fitting often can fit many different types of nonlinearity. We 
find the final regression estimate by taking the median of 
these four regressions. We use this same process for FEV1, 
FVC, and PEF measures. As mentioned, FEV1% is 
calculated as a ratio of the estimated FEV1 and FVC 
values. 

Additionally, there are situations when the test is performed 
in a noisy environment or the channel itself might be noisy. 
To deal with such situations, the system automatically 
detects the level of background noise by looking at the 
mean absolute amplitude of the recorded sound for a 
250 ms window immediately before the user exhales. This 
is the period when the user is most silent and we use it as an 
opportunity to measure the ambient noise level. If the 
amplitude of sound within this window is estimated to be 
above an empirically determined threshold, the 
environment is considered unsuitable for data collection. 
The threshold used here is same as the one used in the 
SpiroSmart clinical trials.  

 
Figure 4. Flowchart for lung function estimation without 
whistle. 



Lung Function Estimate with Whistle 
SpiroCall faces three audio sensing challenges, (1) 
variability of different phones, (2) low sound amplitude for 
severely impaired patients, and (3) inconsistency of the 
distance between a user’s mouth and the microphone. 
Bernard Vonnegut, in 1954, designed a whistle that 
changed its pitch in proportion to flow rate and called it a 
vortex whistle [17]. Later, Watanabe and Sato suggested 
modifications to vortex whistle construction for use in 
spirometry efforts  [16,18,21]. In their study, they used 
pitch tracking to convert the vortex whistle sound to an 
estimate of flow rate. Considering pitch tracking is resilient 
to variations across devices, such as gain and frequency 
response, the whistle could make SpiroCall independent of 
distance, channel, and device. The whistle has no moving 
parts and thus, is as simple as any spirometer mouthpiece—
mass-producible for less than 10 cents (US). We decided to 
test the design proposed in [16] to see if it could be used as 
a flow-sound transducer instead of the user’s vocal tract. 
However, we found the proposed design unsuitable for 
spirometry and modified it based on a pilot study with 15 
participants.  

The vortex whistle consists of three sections: the inlet, the 
cylindrical cavity, and the downstream tube. The inlet is a 
cylindrical pipe that is tangentially connected to the 
cylindrical cavity on its curved surface. The user blows 
through this tube. The cylindrical cavity allows the air 
inside to swirl around the chamber. The downstream tube is 
attached perpendicular to the cylindrical cavity. When the 
air enters the cylindrical cavity, it starts rotating along the 
circumference of the cavity, thereby forming a vortex, and 
moves toward the downstream tube. The arrows in 
Figure 5 (Left) show the result of a simulation of airflow 
within the whistle. The color of the arrow denotes the 
simulated velocity of the air. When the air leaves the 
cylindrical cavity, the vortex becomes unstable and whips 
around at an angular velocity that is proportional to the 
rotational velocity of the vortex. This unstable vortex 
generates sound as it leaves the downstream tube. 

The frequency produced by the whistle is affected by 
several factors, including the dimensions of the whistle 
[17]: 
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where 	! is frequency, 8 is input flow rate, 9::	is the radius 
of the vortex in the cylindrical cavity, ;	is the cross-
sectional area of the inlet, 9< is radius of the air in the 
downstream tube, =>?@ is the length of the downstream 
tube, and Δ=>?@ is the length of the vortex formed at the 
outlet of the whistle. The sin term refers to the angle 
between the formed vortex and cylindrical plane. This term 
is difficult to calculate mathematically, necessitating that 
the quantity be determined through calibration [16]. Typical 
values range between 0.35 up to 0.95 [16]. 

We modified the design suggested in [16] to ensure that the 
whistle’s response remains linear even at flow rates around 
15 L/s (verified via SolidWorksTM simulations). This flow 
rate is well above the peak flow rate attainable by 
individuals with height up to 210 cm. We designed two 
sizes of the whistle (dimensions shown in Figure 5, Right), 
as different sizes will have different pitch gradients.  

We 3D-printed the whistles on a Stratasys BST768 printer 
using ABS plastic material. Our evaluation of both the 
whistle sizes with 50 participants demonstrated that the 
bigger whistle performed better because it had a steeper 
pitch gradient. From a usability standpoint, 34 out of 50 
participants also preferred using the bigger whistle, because 
it was easier to handle.  

Algorithm for Lung Function Estimation with Whistle 
When a vortex whistle is used, we can simplify the audio 
processing considerably because the whistle pitch changes 
linearly in response to flow rate. Simple pitch tracking can 
estimate the flow rate over time. We can calibrate the 
parameters of this linear relationship (bias and slope) using 
a few example spirometry efforts. For a particular vortex 
whistle with set dimensions, these parameters only need to 
be calibrated once.  

Whistle Pitch Extraction: All audio data is resampled to 
44.1 kHz to ensure uniformity in the processing across 
devices with different sampling rates. We first process the 
spectrogram of the effort to track the pitch. We segment the 
data into frame durations of 46 ms with a step size of 3 ms 
between frames. Next, we find the peak magnitude in the 
spectrogram (Figure 6) and search for the peak frequency 
within 0.25 seconds. The peak frequency (Figure 6, top of 
the white curve) corresponds to the PEF of the spirometry 
effort. We track pitch backward and forward in time from 
that point, stopping when the spectral energy ceases to trend 
towards lower frequencies. This helps us ignore wheezing 
at the end of a spirometry effort that may overwhelm the 

 
Figure 5. (Left) 3D rendering of the whistle. The arrows 
show the airflow and the colors denote the velocity. Red is 
faster and blue is slower. (Right) Dimensions (in mm) of the 
two whistles: Small: RCC = 20, RDST = 11, RIT = 8, LIT = 50, 
LDST = 24, LCC = 40. Big: RCC = 37.5, RDST = 12.5, RIT = 8, LIT 
= 74, LDST = 27, LCC = 35. 



 

Figure 7. Flowchart for lung function estimation with 
whistle. 

main whistle audio amplitude. For each frame, we fit a 
quadratic polynomial to the frequency bin of interest and its 
two neighbors to attain sub-bin accuracy in our peak 
frequency estimates [11]. We stop pitch tracking once the 
resonance passes below a certain empirically determined 
pitch threshold, as the whistle mouthpiece does not resonate 
well at lower flow rates and therefore lower frequencies. 

For example, in Figure 6, the pitch can be tracked up to 1 s. 
This means that while we can infer the FEV1 value from the 
pitch data, the FVC value needs an extrapolated curve.  

Tail Extrapolation: After the flow achieves its peak value 
(PEF), the flow rate decays exponentially for a healthy 
individual and decays faster than exponentially for an 
individual with obstructive lung impairments. Therefore, 
when we extrapolate the pitch curve, we cannot just use an 
exponential fit function. We apply a combination of 
exponential and exponential of exponential fits, so that the 
system automatically adapts to different types of flow-time 
curves, including the ones where the flow rate decay faster 

than exponentially . We fit the following function to the tail 
end of the flow-time curve: 

B C = DEFGHIJ + D.FGHLJ
M
⋅ D$FO

PQRS												(2) 

We use the entire descending limb of the tracked pitch to fit 
our extrapolation function. The green area (Tail Fit only) in 
Figure 6 shows the time over which the curve is 
extrapolated. The blue area (Body, Data+Fit) represents the 
phase in time during which reliable resonance tracking data 
is available. However in order to transition smoothly from 
resonance-tracking to extrapolation, we cross-fade from 
resonance-tracked data to extrapolated data within the blue 
region. We evaluated our extrapolation function by 
applying it to the set of groundtruth flow-time curves to 
ensure it was able to model the tail end of a user’s 
exhalation. Although the extrapolation function worked 
exceptionally on groundtruth data (mean error = 3.2%), 
when we evaluated the extrapolation on the audio data 
received from SpiroCall devices, our FVC estimates had an 
average error of 15%. We therefore decided to estimate the 
FVC through a regression model, using the extrapolated 
curve as a feature in the regression. 

FVC Regression Model: Although our tail extrapolation 
method did not provide an adequate volume (FVC) 
measure, it still provided a good, albeit noisy, estimate in 
most cases. We, therefore, encode the pitch tracking output 
as a set of regression features. Figure 7 shows all the 
features used in the regressions. The features can be broken 
down into the three phases of the pitch tracking in Figure 6: 
Head, Body, and Tail. We use the estimated PEF, i.e., the 
peak frequency of the tracked pitch, as the representative 
feature from the Head section of the curve. We also use the 
peak amplitude (normalized) of the overall audio. From the 
Body section of the curve, we use the area under the pitch-
tracking curve until the end of the body section, and the 
area under the curve until the end of 1 sec, i.e., FEV1 
estimate. The next set of features comes from the Tail 
extrapolation. We use the coefficients generated by the tail 
extrapolation as an encoding of the curve in the Tail region 
of the curve. Specifically, we use DE, D., and D$from 
Equation (2) as features in the regression. Apart from these 
features, we also use height, age, and sex as our 
demographic features. It is common practice in spirometers 
to record a patient’s physical details as this information 
helps the device in calculating predicted normal lung 
function for the patient. 

Similar to the no-whistle condition, the regression 
algorithm employs an ensemble of three regressions: linear, 
LARS, and elastic net regressions. We combine the outputs 
of all regressions and select a median of their estimates as 
the final FVC estimate. We use leave-one-patient-out cross 
validation in all levels of learning to avoid overfitting.  

Figure 6. The blue and orange regions are associated 
with the pitch tracked by the algorithm. The green region is 
extrapolated based on information in the blue region. 



 
Figure 8. SpiroCall experimental setup. We recorded the 
data on four phones at the same time. Two phones recorded 
the audio locally. The other two phones called Google Voice 
numbers and sent the audio data over the GSM channel to 
the Google Voice server. 

EVALUATION 
To evaluate SpiroCall, we created an extensive dataset of 
audio samples and ground truth spirometry data. We 
recruited 50 participants (30 males, 20 females), ranging in 
age from 21 to 67 years (M = 30) through flyers and email 
messages in the university. The study sessions were 
conducted in a non-clinical lab setting and lasted for 
approximately 30 minutes. 20% of participants had mild to 
moderate lung obstruction, i.e., FEV1% < 0.80 (Table 1).  

The SpiroCall study used a within-subjects 2�2�3 
factorial design. The factors and levels were: 

• Phone Type: iPhone and non-iPhone. We used two non-
iPhone devices: Samsung Note 3 and Sony Ericsson 
W580i. We used the W580i (feature phone) to evaluate 
the performance of SpiroCall on an approximately 10-
year-old device.  

• Channel Type: Local recording or voice channel 
recording. We kept the iPhone consistent in both 
channels to analyze the performance of SpiroCall if only 
the channel is changed.  

• Whistle: No whistle, small whistle, and big whistle. We 
recorded audio data for two whistles to understand if 
different participants preferred different sizes or if one 
size gave results that were more reliable that the other.  

All the conditions were counterbalanced and we 
randomized the order of the whistles. 

Experimental Setup 
We collected the audio data on four phones, two iPhone 4S 
smartphones, a Samsung Galaxy Note 3, and a Sony 
Ericsson W580i feature phone. All four phones were in 
front of the user at roughly an arm’s length away (Figure 8). 
The distance was not formally controlled or varied. One of 
the iPhones and the Samsung Note recorded the audio data 
locally at 32 kHz and 44.1 kHz, respectively. The other two 
devices sent the data over the GSM voice channel. These 
phones placed phone calls to different Google Voice 
accounts that recorded the data in the form of voicemail 
messages. Google Voice saved the audio data as 44.1 kHz 
MP3 files, but the GSM channel band-limited the data to 

less than 8 kHz. The difference between the local 
recordings and those done over the GSM channel is shown 
in Figure 3.  

We transferred the data from the local phones (iPhone 4S 
and Samsung Note) to the computer over a USB connection 
at the end of the study. We downloaded the data from the 
Google Voice accounts as MP3 files to a computer. 

Procedure 
We collected the ground truth for the participants on two 
FDA-approved clinical spirometers: the nSpire Koko 
Legend and the NDD EasyWare spirometer. We used the 
two spirometers to answer two questions: (1) whether the 
participants got fatigued as the session progressed, and (2) 
how much variability exists between the outputs of the two 
devices. We recorded the variability between the clinical 
devices to use it as a benchmark for SpiroCall’s 
performance. The participants performed at least 15 
spirometry efforts (three each for: two clinical spirometers, 
two whistles, and one without whistle). Spirometry 
measurements are completely effort-dependent and some 
fatigue can build up when performing this many efforts. 
Therefore, we recorded efforts on one clinical spirometer at 
the beginning of the session and on another spirometer at 
the end of the session. We randomized the order for each 
participant.  

At the start of each session, we explained the forced 
expiratory maneuver to the participants and we asked them 
to practice using the spirometer. Once the participants were 
able to perform an acceptable maneuver according to the 
ATS criteria for reproducibility [10], three efforts were 
recorded using the spirometer. Next, we introduced the 
participants to SpiroCall.  

The four phones (Phone Type × Channel Type) recorded 
the audio simultaneously, thus saving the participants from 
performing tests with each device type separately. One of 
the authors, who was trained to administer spirometry 
efforts, gave feedback to the participants regarding the 
acceptability and quality of the efforts. In the future, it will 

Table 1. Demographic information of the participants. 

Participant Demographics (N = 50) 

Males (n, %) 30 (60%) 

Age (yrs) (mean, range) 30 (21 – 67) 

Height (cm) (mean, range) 172 (155 – 188) 

Reported Lung Ailments 

Asthma: 10 (20%), Bronchitis: 2 (4%), COPD: 2 (4%), 

Cystic Fibrosis: 1 (2%), Sarcoidisis: 1 (2%) 

Low Lung Function (n, %) 16 (32%) 

Never Performed Spirometry (n, %) 30 (60%) 

 



be straightforward to have a system that automatically 
determines if an effort was too low in volume. 

Note that collecting the SpiroCall data and the clinical 
spirometer data at the same time is impossible, so explicit 
ground truth was unknown. Instead, each effort from 
SpiroCall was associated with the best effort selected by the 
clinical spirometer. As per the ATS criteria, the spirometer 
selects the effort with the highest FVC as the best one 
[2,10]. 

RESULTS 
In this section, we discuss the performance of SpiroCall 
when compared to the two clinical spirometers in terms of 
accuracy of estimated lung function measures and false 
positives vs. false negatives. We consider an estimate to be 
a false negative if the groundtruth FEV1% is below 0.8 and 
SpiroCall predicts the value to be above 0.8 [2]. We break 
down these results by Phone Type and Channel Type. We 
also compare the performance of SpiroCall with and 
without a vortex whistle. Finally, we discuss the accuracy 
and usefulness of the flow-volume curves generated by 
SpiroCall. Based on our evaluation we conclude that 
SpiroCall can help in screening and monitoring patients 
with lung impairments in low resource regions. 

Two Ground Truth Devices 
As mentioned, we used two clinical spirometers to collect 
groundtruth. We compared their respective lung function 
measure and found that PEF had the maximum difference 
of 9.2% between the two devices, and FEV1, FVC, and 
FEV1% had a difference of 5.1%, 5.2%, and 3.2%, 
respectively. However, none of these differences are 
statistically significant (based on an F-test, p>0.05). We 
also studied the effect of order to understand if fatigue 
played any role in exaggerating the difference between the 
two devices. In a 2-way ANOVA test with presentation 
order of the two spirometers as a between-subjects factor, 
we found that the difference in estimates of PEF and FEV1 
were statistically significant (p<0.05). This finding suggests 
that the participants got fatigued by the time the session 
ended. Therefore, we use the results from the first 
spirometer that the participants used as their groundtruth or 
reference device. While this means that the reference device 
was not consistent across participants, the difference in 
device performance was not found to be significant and 

should not strongly affect the final analysis. In addition, we 
corrected for fatigue by counter-balancing between all 
Phone, Channel, and Whistle Type conditions for all 
participants.  

Lung Function Estimate without Whistle 
We break down the comparison of measurements from 
SpiroCall and the clinical spirometers by evaluating how 
well it performs for different lung function measures and 
the number of outliers and false negatives. 

Accuracy of Lung Function Measures 
The graphs in Figure 9 (Left) present the percentage error of 
each measure without a whistle. For all lung function 
measures, the algorithm returns an average error of less 
than 10%. There is no significant difference between the 
performance of smartphones recording the data locally in an 
app (Samsung Note and Apple iPhone) and phones running 
over the voice communication channel (Sony W580i and 
Apple iPhone 4S). The performance is best for FEV1%, 
which is the most common measure of lung function used 
in diagnosis because it is typically most consistent [10,15]. 
The mean error rate for FEV1% is below 6% for all the four 
conditions. The ATS acceptability criteria require lung 
function measures to be within 7% to 10% of one another 
[15]. For most patients, SpiroCall performs well within the 
expected level of variation, even if the patient did not have 
a smartphone and performed the test on a phone call. 
However, it is important to evaluate the outliers (with error 
higher than twice the standard deviation) and see whether 
the lung function measures are under-estimated or over-
estimated. We use twice the standard deviation because the 
first standard deviation is within the ATS acceptability 
criteria [15] and the result cannot be considered an outlier. 

Outliers and Patients with Low Lung Function 
In order to understand the direction of the bias, we use the 
modified Bland-Altman plots [1] in Figure 10. The figure 
shows the percentage difference between SpiroCall and the 
output of a spirometer versus the spirometer measurement 
of FEV1%. Lines indicating ±2σ (red dashes). We focus 
solely on FEV1% because it is the most common lung 
function measure for diagnosis. If the percentage difference 
is positive, then the lung function was over-estimated (false 
negative). It can be seen in Figure 10, Top-Left and Top-
Right, that SpiroCall (both without whistle) tend to over-

 
Figure 9. Percent error for different lung function measures on different devices without whistle (Left), and with whistle 
(Right). The first two devices recorded the data locally in an app; the next two devices recorded the data over a phone call. 
The error bars show standard deviation.  



estimate the actual value for some patients with low lung 
function (FEV1% < 0.8), i.e., a false negative. We highlight 
the false negatives inside the gray boxes. In any medical 
device, it is more acceptable to have a false positive than a 
false negative. The main reason the system currently has 
more false negatives for low lung function is because the 
algorithm is data driven and the population with higher lung 
function is better represented. Therefore, the model tends to 
bias towards the median value. Considering the signal-to-
noise ratio is lower for the devices connected over the GSM 
channel, the false negatives are slightly more pronounced in 
case of voice call (Figure 10, Top Right).  

One way to quantify the model’s bias towards higher lung 
function is to calculate the statistical effect of lung function 
measure (FEV1% in this case) on the error of the model. 
We tested for effects of groundtruth FEV1% on the percent 
error through a chi-square test. We found that there was a 
significant effect of the groundtruth FEV1% on the 
accuracy of SpiroCall (p<0.05). As such, the performance 
of SpiroCall might degrade further if tested on more highly 
obstructed patients. Although the bias is only slight and 
there are relatively few false negatives, from a diagnostic 
perspective, it could mean that patients are screened 
improperly.  

Lung Function Estimate with Whistle 
The bias in the performance of the system due to 
groundtruth lung function of the user prompted us to 
explore the possibility of using a whistle for the users of 
SpiroCall. 

Comparison of Two Whistle Sizes 
We used two sizes of the vortex whistle in our study. Both 
whistles had slightly different gradient of pitch with respect 
to the input flow. We performed a two-sample F-test for 
equal variances on the percentage error for the four lung 

function measures for both whistle sizes. We observed a 
significant effect (p<0.01) of size on FVC and FEV1%, in 
favor of the bigger whistle. The percentage difference 
between the two whistles was 0.24%, 4.22%, 2%, and 
2.13% for PEF, FEV1, FVC, and FEV1%, respectively. 
Considering the bigger whistle worked significantly better, 
our analysis of SpiroCall only includes the larger whistle.  

Accuracy of Lung Function Measures 
Bar graphs shown in Figure 9 (Right) display the 
percentage error of each lung function measure for each 
device and connection type with a whistle. The Sony 
Ericsson W580i performed the worst among all the phones. 
However, the difference was not statistically significant (F-
test, p>0.05). Among the lung functions, the error was 
highest for PEF, but it is worthwhile to note that the 
variance in PEF was also the highest for the groundtruth 
spirometers. The most widely used lung function measure, 
FEV1%, has less than 8% mean error for three of the four 
device types.  

Outliers and Patients with Low Lung Function 
In order to understand the direction of the bias present in 
whistle results, Figure 10 (Bottom) shows modified Bland-
Altman plots of FEV1%, displaying percentage difference 
between SpiroCall (with whistle) and the spirometer versus 
the spirometer measure. From these plots, we show that the 
whistle mitigates false negatives. We highlight the false 
negatives inside gray boxes. Most of the error for the 
whistle comes from false positives. When comparing local 
recordings and voice calls, there is no significant 
performance difference (F-test, p>0.05). However, using 
the whistle, we eliminate the bias in the estimate that we 
saw in case of no whistle. This means the whistle may be a 
superior screening tool, especially for patients with very 
low lung function. We quantify this effect of bias as before 
by considering the effects of groundtruth FEV1% on the 
percent error through a chi-square test. We found that there 
was no significant effect of the groundtruth FEV1% on the 
accuracy of SpiroCall across devices (p>0.05).  

 
Figure 11. Two Flow vs. Volume curves generated by 
SpiroCall with a whistle and without a whistle. 

Curves Generated by SpiroCall 
We now shift our discussion from lung function measures 
to the shape of the flow-volume curves. The spirometry 
curves serve two purposes: (1) to evaluate if the patients 
performed the effort sufficiently, and (2) to help in 
diagnosis by showing the descending limb of the FV curve. 
A technician looks at the slope of the FV curve from the 

 
Figure 10. Bland-Altman plots of percent error of FEV1% 
(without and with whistle) for local and voice call recordings 
versus the value obtained from the clinical spirometer. The 
false negatives are highlighted inside grey boxes. ±2σ (red 
dashes) are also shown.  



start of the test to PEF. This slope should be as steep as 
possible, indicating that the initial blast of air was truly 
maximal. The investigator also looks to see if the user 
coughs during the spirometry maneuver. Coughing makes 
the descending edge of the FV curve non-monotonic as the 
user ends up inhaling during a cough. Therefore, it is 
important to evaluate how SpiroCall performs in generating 
these curves. 

Figure 11 shows example flow-volume curves generated by 
SpiroCall without the whistle and with the whistle; we find 
that the curves generated without a whistle can be 
unreliable. The no-whistle (green) curve in the Figure 12 
(Right) has an inaccurate shape because the latter half of the 
effort by the patient was very quiet. When the GSM 
channel compressed the audio, this segment was heavily 
compressed and not reconstructed accurately. However, 
these curves can still be used for validity assessment of the 
efforts. The initial part of the effort is always very loud and 
reconstructed accurately. Therefore, the investigator can 
still look at the ascending slope at the start of the test. For 
cough information, we envision that the Hilbert envelopes 
of the temporal audio data can be attached along with the 
spirometry curves, which would make any coughs clearly 
visible. However, in cases where the spirometry curves are 
of importance, we suggest the use of a whistle. The whistle 
generates a direct mapping to the Flow vs. Time curve and 
the final Flow vs. Volume curves are usually very accurate. 
We recognize that a more rigorous evaluation of the 
spirometry curves is important. This is part of our on-going 
work, where we are sending all the curves generated by 
SpiroCall to medical practitioners for quality assessment at 
Spirometry 3601.  

DISCUSSION 
SpiroCall offers two approaches to performing spirometry 
through a call-in service: with a vortex whistle and without. 
The performance of both approaches is very promising and 
the mean error of the four major lung function measures is 
6.2%, which is well within the ATS criteria for a clinical 
spirometer. However, the system sometimes over-estimates 
lung function when used without a whistle. We believe that 
this limitation stems from the fact that without a whistle, 
the algorithm depends on the spread and variation in its 
training data to remove the bias in its estimation. We plan 
to combine the SpiroCall clinical evaluation with ongoing 
SpiroSmart clinical trials.  

The linear relationship between flow-rate and pitch makes 
the vortex whistle reliable for estimating lung function 
measures and spirometry curves with significantly fewer 
false negatives and almost no bias toward high lung 
function. Another major advantage with the whistle is that 
its estimation model is generalizable across devices and 
channels. In fact, it calculates PEF and FEV1 directly, 
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without any statistical modeling. For the patients with 
obstructive lung impairments such as asthma and COPD, 
the lung function measure that changes most drastically is 
FEV1. If the patient only needs to track their FEV1 with fine 
granularity (a common practice for many patients), 
SpiroCall can use a much simpler computation with a 
whistle, without any machine learning. Moreover, it will be 
easier to judge a valid effort because the shape of the curve 
is more faithfully represented. 

SpiroCall’s performance is promising as the mean 
performance loss due to use of the call-in service is only 
around 1%. The flexibility between channels and the 
possibility of using a whistle allows SpiroCall to make 
spirometry accessible. However, this only demonstrates the 
feasibility of sensing. It remains unclear how the user, in 
general, could use spirometers without any guidance from 
trained personnel. Although SpiroSmart tries to bridge this 
gap with a rich visual interface, it will be more difficult for 
SpiroCall to train the user. It is possible that in future work 
we could implement audio feedback between spirometry 
efforts, or have a health worker train the user before they 
are able to use SpiroCall independently.  

CONCLUSION 
In order to make spirometry more accessible, it is important 
to remove its dependence on smartphones. We introduced 
SpiroCall, a combination of call-in service and a simple 
whistle that turns every mobile phone in the world into a 
spirometer. The phone sends the audio data generated 
during a spirometry effort over the GSM voice channel and 
calculates the results on a central server. Our evaluation 
shows that we can use SpiroCall to reliably measure lung 
function in low resource regions. SpiroCall’s call-in 
service’s mean error is comparable to a clinical spirometer 
and does not degrade substantially when compared to local 
recordings made on a smartphone. The whistle helps in 
improving the performance with patients with degraded 
lung function. SpiroCall also serves as a demonstration that 
researchers can perform sensing on all mobile phones, not 
just smartphones, by leveraging the voice channel for data 
transfer. 
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